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Abstract 15 

Lipid concomitants are the main trace substances that determine the oxidative stability 16 

of oils. Over 90% of oils are composed of triglycerides, which affect oxidative 17 

stability. Oils typically enter living organism as emulsions. This study investigated the 18 

physical properties and cellular antioxidant activity (CAA) of emulsions in two model 19 

oils, namely, rice bran oil (RBO) with long-chain unsaturated triglycerides and 20 

coconut oil (CNO) with medium-chain saturated triglycerides. The results were as 21 

follows: the mean particle sizes were all approximately 250 nm; the polydispersity 22 

index (PDI) values were below 0.2; and the zeta potential values were more negative 23 

than -30 mV. The droplet size distribution of CNO emulsions was more concentrated 24 

than that of RBO emulsions. Rice bran oil-S (RBO-S) emulsions exhibited the highest 25 

CAA value, but the CAA value of coconut oil-C (CNO-C) emulsions was higher than 26 

that of rice bran oil-D (RBO-D) emulsions, indicating that CAA was influenced by 27 

the combined effect of triglycerides and minor constituents. Moreover, the 28 

medium-chain saturated triglycerides in vegetable oil emulsions resulted in a stronger 29 

CAA than that of long-chain saturated triglycerides.  30 

 31 

Keywords: Emulsion; Triglycerides; Cellular antioxidant activity; Rice bran oil; 32 

Coconut oil 33 

  34 
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1. Introduction 35 

In recent years, research on whole food, containing a naturally occurring a mixture 36 

of phytochemicals and antioxidant compounds, for the amelioration of oxidative 37 

status, not a single compound, has received widespread attention (Johar et al, 2018). 38 

Vegetable oils contain abundant and biologically active minor constituents, such as 39 

polyphenols, sterols, oryzanol, and tocopherols (Siger, Nogala-Kalucka, & 40 

Lampart-Szczapa, 2008; Kozłowska, Gruczyńska, Ścibisz, & Rudzińska, 2016), and 41 

they also contain 90-98% glycerides, are mainly composed of different chain lengths 42 

and saturation of triglycerides (Rao, 2001; Yalagala, Sugasini, Ramaprasad, & 43 

Lokesh, 2017). Although minor constituents have been always used to indicate the 44 

antioxidant property of vegetable oils (Szydlowska-Czerniak & Laszewska, 2015), the 45 

oil itself, such as the type of triglycerides, may affect the overall measurement result. 46 

(Pálová, Charvat, & Kvapil, 2008). In addition, unsaturated fatty acids with double 47 

bonds are easily attacked by free radicals (Meroni & Raikos, 2017). Peony seed oil 48 

possesses a potent scavenging effect against free radicals as well as in vivo 49 

antioxidant capacity, which is related to fairly low ratio of n-6 to n-3 polyunsaturated 50 

fatty acids originating from its uncommon abundance in α-linolenic acid (Yang et al., 51 

2017). Phenolic compounds display different properties in different plant matrices 52 

(Aalim, Belwal, Wang, Luo, & Hu, 2018). Therefore, different triglycerides systems 53 

may affect the antioxidant activity of the active compounds in vegetable oils. 54 

Moreover, some functional foods are developed based on combinations of different 55 

vegetable oils, such as in the preparation of trans-free structure lipids (Lakum & 56 
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Sonwai, 2018), and the production of saturated fat-reduced processed cheese products 57 

based on lipid composition. The principle may involve the differences in the 58 

interaction between the fatty acids of vegetable oils and the protein network structure 59 

(Huang, Hallinan, & Maleky, 2018). In processed foods, vegetable oils are mostly 60 

stabilized in the form of emulsions, which improve the function and quality of the oil. 61 

Whether consumed as a whole food or edible oil, the intake, absorption, and 62 

metabolism of oil in the body are completed in various emulsion forms as lipolysis 63 

takes place at the oil-water interface (Drewnowski & Almiron-Roig, 2010; Gallier & 64 

Singh, 2012). It has been previously reported that the type and polarity of the lipid 65 

phase in emulsions significantly affect the antioxidant activity of active compounds 66 

(Hopia, Huang, Schwarz, German, & Frankel, 1996). Therefore, it is important to 67 

investigate the effects of triglycerides with different chain lengths and saturation on 68 

the antioxidant capacity of whole vegetable oils in the form of emulsions, which 69 

represents the form that the body intakes.  70 

Emulsions allow incorporation of high nutritional value oils, such as high-oleic 71 

palm oil (Ricaurte, Perea-Flores, Martinez, & Quintanilla-Carvajal, 2016), linseed oil 72 

(Sotomayor-Gerding et al., 2016) or clove essential oil, with high in vitro bactericidal 73 

action, thus improving their bioavailability (Salvia-Trujillo, Rojas-Graü, 74 

Soliva-Fortuny, & Martin-Belloso, 2015). Emulsions improve the functionalities of 75 

vegetable oils due to reduced droplet size, which increases the specific surface area. 76 

Emulsions are kinetically stable colloidal dispersions that aid oils to overcome water 77 

insolubility and instability, simultaneously enhancing cellular uptake of oils (Solans, 78 
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Izquierdo, Nolla, Azemar, & Garcia, 2005; Ma, Yu, Yin, Tang, & Yang, 2018). There 79 

are many factors that affect emulsion properties, such as environmental conditions 80 

(Salvia-Trujillo, Rojas-Graü, Soliva-Fortuny, & Martin-Belloso, 2015), system 81 

components (including different oils composed of various triglycerides with different 82 

chain lengths and saturation degrees), and emulsifier type. One of the commonly used 83 

emulsifiers in the formation and stabilization of emulsions is whey protein isolate 84 

(WPI), which is natural and adsorbs more easily at the oil-water interface, thus 85 

preventing droplets from aggregating by generating repulsive interactions and 86 

forming stabilizing emulsions during homogenization (Ozturk, Argin, Ozilgen, & 87 

McClements, 2015; Li et al, 2019). 88 

The following chemical assays are often used to determine the antioxidant ability 89 

of oil extracts: oxygen radical absorbance capacity (ORAC), 2, 90 

2-diphenyl-1-picrylhydrazyl (DPPH), and 2, 2'-azino-bis, 91 

3-ethylbenzthiazoline-6-sulfonic acid (ABTS) (Shi, Zheng, Jin, & Wang, 2017; Liu et 92 

al., 2019). However, the cellular antioxidant activity (CAA) assay is a common model 93 

for evaluating antioxidant function at a biological level. Measurement of the ability of 94 

compounds to prevent the formation of fluorescent dichlorofluorescein by 2,2′95 

-azobis (2-amidinopropane) dihydrochloride (ABAP)-generated peroxyl radicals in 96 

HepG2 cells allows quantification of the CAA of dietary supplements, foods and 97 

phytochemicals. This reaction of cellular biochemical processes includes uptake, 98 

distribution, bioavailability and metabolism of the antioxidant components (Wolfe & 99 

Liu, 2017; Liu et al., 2019). 100 



6 
 

Rice bran oil (RBO) is a type of nutritionally rich oil, mainly composed of 101 

long-chain unsaturated fatty acids. The fatty acid composition of RBO is mainly 102 

composed of oleic, linoleic, and palmitic acids. RBO contains γ-oryzanol, tocopherols, 103 

and sterols, which have many bioactive abilities (Friedman & Mendel, 2013; 104 

Piriyaprasarth, Juttulapa, & Sriamornsak, 2016). Coconut oil (CNO) is a rare 105 

vegetable oil, mainly composed of medium-chain saturated triglycerides, which are 106 

easily absorbed into the body and stable against oxidation, thus not prone to peroxide 107 

formation (Bhatnagar, Prasanth Kumar, Hemavathy, & Gopala Krishna, 2009).   108 

In this study, RBO and CNO were selected as typical oils with different types of 109 

triglycerides, and the CAA model was exploited to compare the cellular antioxidant 110 

properties of whole oil in the form of emulsions. We aimed to explore the effects of 111 

different triglyceride systems on the cellular antioxidant properties of whole vegetable 112 

oil emulsions, which may provide a theoretical reference for the combination of 113 

triglycerides and minor constituents from the perspective of the antioxidant property 114 

of the vegetable oil. 115 

 116 

2. Material and methods 117 

2.1 Samples and materials 118 

2.1.1 Samples 119 

The following rice bran oils were used: RBO-D (Zhejiang), RBO-P (Jiangsu), and 120 

RBO-S (Jiangsu). The following coconut oils were used: CNO-C (Shanghai) and 121 
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CNO-J (Philippines). Rice bran oils (RBOs) and coconut oils (CNOs) from different 122 

origins were all purchased from supermarkets. 123 

2.1.2 Materials and chemicals 124 

Whey protein isolate (WPI; Cheshire, UK, CW97RA) was purchased from Hilmar 125 

Food International, Inc. (Livingston, CA). Standard tocopherols (α-, β-, γ- and 126 

δ-isomers; purity>95%), oryzanol, 5α-cholestane, 2′, 7′-dichlorofluorescin diacetate 127 

(DCFH-DA), methylene blue dye solution, quercetin, and glutaraldehyde solution FL 128 

were obtained from Sigma-Aldrich Chemical Co. (Shanghai, China). 2,′-azobis 129 

(2-amidinopropane) dihydrochloride (ABAP) was purchased from Wako Chemicals 130 

Co. (Shanghai, China). Hanks’ Balanced Salt Solution (HBSS), Dulbecco’s minimum 131 

EM (DMEM), foetal bovine serum (FBS), streptomycin, penicillin, and 132 

phosphate-buffered saline (PBS) solution were obtained from Gibco Life 133 

Technologies (Grand Island, NY). Folin-Ciocalteu (FC) reagent, sodium carbonate, 134 

acetic acid, methanol, ethanol, and other chemicals were obtained from Chemical 135 

Reagent Company (Shanghai, China). HepG2 cells were acquired from the American 136 

Type Culture Collection (Rockville, MD). 137 

2.2 Determination of RBO and CNO composition 138 

2.2.1 Determination of triglycerides and fatty acids composition 139 

The equivalent carbon number (ECN) of triglycerides was detected by 140 

HPLC-ELSD. Briefly, 20 µL of sample was injected at flow rate of 0.8 mL/min. 141 

Mobile phase A was acetonitrile, and mobile phase B was isopropanol. The following 142 
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elution procedure was performed: 0-30 min, 70% A/30% B linearity becomes 60% 143 

A/40% B; 30-70 min, 60% A/40% B linearly becomes 55% A/45% B; 70-90 min, 55% 144 

A/45% B is kept constant; and 90-95 min, linearly changed to 70% A/30% B. The 145 

area normalization method was used for quantification. Fatty acid composition was 146 

determined using a GC-14B gas chromatography (Shimadzu, Tokyo, Japan) equipped 147 

with a flame ionization detection (FID) (Agilent) as previously described (Amaral, 148 

Cunha, Alves, Pereira, Seabra, & Oliveira, 2004) with the following parameters: FID 149 

temperature of 250 °C; inlet temperature of 250 °C; split ratio of 1:50; temperature 150 

programming process at 80 °C for 3 min followed by 15 °C/min to 215 °C and hold 151 

20 min; acquisition time of 30 min; and injection volume of 2.0 µL.    152 

2.2.2 Determination of minor constituent content 153 

Tocopherols were determined using high-performance liquid chromatography 154 

(HPLC) (LC-20AT; Shimadzu, Kyoto, Japan) (Gao, Jin, Liu, Jin, & Wang, 2018). 155 

The following parameters were used: column temperature of 30 °C; mobile phase of 156 

hexane/isopropanol (98.5/1.5, v/v); rate of 1.0 mL/min; and determining wavelength 157 

at 295 nm. Oryzanol was determined using HPLC with the following parameters: 158 

column temperature of 40 °C; mobile phase of ethanol; rate of 0.8 mL/min; and 159 

determining wavelength at 324 nm (Liu et al., 2019). Sterols were determined using a 160 

gas chromatography-mass spectrometry (GC-MS) system (Thermo Fisher) equipped 161 

with a FID (Thermo Fisher) following the method of Jin et al (2016). The total 162 

phenolic content of the oil extracts was measured using the Folin-Ciocalteu method 163 

(Gómez Caravaca, Carrasco Pancorbo, Cañabate Díaz, Segura Carretero, & 164 
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Fernández Gutiérrez, 2005). Oil (1.5 g) was dissolved in 6 mL of hexane and was 165 

passed through a Diol-SPE column, leaving the sample on the solid phase. The 166 

column was washed with two portions (of 3 mL) of hexane. Finally, the sample was 167 

recovered by passing through 6 mL of methanol to extract phenolic compounds from 168 

oils.   169 

2.3 Preparation of emulsions 170 

Emulsions were prepared according to a previously reported method (Ozturk, Argin, 171 

Ozilgen, & McClements, 2015) with minor adjustments. Emulsions were prepared by 172 

high pressure homogenizing 10% (w/w) of lipid phase (RBO or CNO) with 90% (w/w) 173 

of aqueous phase. The aqueous phase consisted only of 1% (w/v) emulsifier (WPI), 174 

which was stirred at room temperature overnight (10-12 h) to fully hydrate. Coarse 175 

emulsions were obtained by blending both oil and protein solution together using a 176 

high-speed blender (T25, IKA, Germany) for 2 min at 19000 rpm, and they were 177 

passed through a high-pressure homogenizer (01C100-1K0, GEA, Germany) for 60 178 

MPa and 3 cycle times to gain proper emulsions.  179 

2.4 Determination of emulsion physical properties 180 

Based a previous report (Galvao, Vicente, & Sobral, 2017), the mean particle size, 181 

PDI, and droplet size distribution of RBO and CNO emulsions were measured by 182 

dynamic light scattering (DLS), and the zeta potential was determined by 183 

phase-analysis light scattering (PALS). All determinations were made using a 184 

multi-angle particle size and high sensitivity zeta potential analyser (Nano Brook 185 
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Omni; Brookhaven Instruments, USA). The mean particle size of each emulsion was 186 

represented as the surface-weighted mean diameter, which was calculated from the 187 

full particle size distribution. The refractive index of oil droplets and water phase 188 

were set to 1.450 and 1.330, respectively. To avoid multiple scattering influences, the 189 

emulsions were diluted 100-fold with ultrapure water before measurement. The 190 

measurements were performed at a fixed angle of 90° and were performed in 191 

triplicate.   192 

2.5 Cell culture  193 

HepG2 cells were cultured in growth medium containing DMEM/FBS/antimycotic 194 

solution (90:10:1, v/v/v) and incubated at 37 °C and 5% CO2. Cells used were 195 

between passages 26 and 35. 196 

2.6 Cytotoxicity analysis 197 

Following a previously reported method (Wolfe & Liu, 2017), the methylene blue 198 

assay was used to assess the potential toxic effects of the RBO and CNO emulsions 199 

on HepG2 cells. HepG2 cells were seeded at 3 × 104/well in a 96-well plate in 100 µL 200 

of growth medium and incubated at 37 °C for 24 h. Emulsion treatments in 100 µL of 201 

medium were applied to cells followed by incubation at 37 °C for 24 h. A volume of 202 

50 µL/well of methylene blue staining solution (98% HBSS, 0.67% glutaraldehyde, 203 

and 0.6% methylene blue) was applied to each well followed by incubation at 37 °C 204 

for 1 h. After washing the wells using water, 100 µL of elution solution (49% PBS, 50% 205 

ethanol, and 1% acetic acid) was added to each well, and the plate was placed on a 206 
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bench-top shaker for 20 min to allow uniform elution. Absorbance was read at 570 207 

nm using the Multiskan Go microplate reader (Thermo Scientific, USA). Emulsions 208 

were not considered to be cytotoxic if their absorbance was >90% compared to the 209 

control.  210 

2.7 Cellular antioxidant activity assay 211 

The CAA assay was used to assess the cellular antioxidant ability of the RBO and 212 

CNO emulsions in HepG2 cells following a previously reported procedure (Wolfe & 213 

Liu, 2017). HepG2 cells were seeded at 6×104/well in a 96-well black microplate with 214 

clear bottom, and 100 µL of medium was added to every well. The plate was 215 

incubated at 37 °C and 5% CO2 for one day. Medium was then discarded, and wells 216 

were washed thoroughly with PBS solution. Medium (100 µL) was then added with 217 

corresponding concentrations of oil emulsions or controls containing DCFH-DA (50 218 

µM) into triplicate wells. After incubation, the solution was removed, and cells were 219 

washed with PBS. Finally, 100 µL of HBSS containing ABAP (600 µM) was added 220 

into the wells, and the microplate was placed into a Fluoroskan Ascent FL microplate 221 

reader (Thermo Scientific, USA). Fluorescence at the excitation and emission 222 

wavelengths of 535 nm and 485 nm, respectively, was measured at 37 °C every 5 min 223 

(13 times in total).  224 

CAA (units) was calculated according to the proportions under the fluorescence 225 

against time curve according to the following formula: 226 

CAA(%) = 100 −

SA − 
BA


CA − 
BA
× 100 
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where SA∫ , CA∫  and BA∫  are the integral areas under the fluorescence against 227 

time curve of the sample, control and blank, respectively.  228 

The median effective dose (EC50) was determined for the oil emulsions according 229 

to the median effect plotting of log (fa/fu) versus log (dose), in which fa is the part 230 

affected (CAA unit) and fu is the part unaffected (100-CAA unit). The EC50 values 231 

were expressed as µmol quercetin of per 100 g of oil (µmol QE/100 g). 232 

2.8 Statistical Analyses 233 

All analyses were performed in triplicate and expressed as the mean ± standard 234 

deviation (mean ± SD). SPSS version 20.0 was used to analyse variance, and 235 

significant differences determined by ANOVA were significant at the 5% level 236 

(p<0.05). Duncan’s post-hoc tests were performed using SPSS version 20.0. 237 

 238 

3. Results and discussion 239 

3.1 Composition of RBO and CNO 240 

3.1.1 Triglycerides and fatty acids composition  241 

The five oils used for the study were analysed for fatty acid composition and ECN 242 

as shown in Table 1. The compositions of fatty acids in RBO samples were myristic 243 

acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), 244 

oleic acid (C18:1), linoleic acid (C18:2), linolenic acid (C18:3), and arachidic acid 245 

(C20:0), which had no significant differences (p>0.05). The data analysed here agreed 246 

with a previous literature report (Gopala Krishna, Hemakumar, & Khatoon, 2006). 247 
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Moreover, the unsaturated fatty acids content reached 80%. ECN is defined as the 248 

carbon number of the hypothetical saturated triglyceride, which elutes at the same 249 

retention time as the unsaturated triglyceride being studied (Podlaha & Bengt, 2015). 250 

The ECN of RBO samples, which also had no significant differences (p>0.05), were 251 

42, 44, 46, and 48. However, the ECN of CNO samples were 36, 38, and 34. In 252 

addition, the CNO had highest content of lauric acid (C12:0; reached 46%) followed 253 

by myristic acid (14:0) and palmitic acid (16:0). The content of saturated fatty acids 254 

(SFA) in CNO reached 90%, which was consistent with a previous literature report 255 

(Bhatnagar, Prasanth Kumar, Hemavathy, & Gopala Krishna, 2009).  256 

3.1.2 Minor constituent levels 257 

The minor constituent analyses results presented in Table 2 showed that the RBOs 258 

all had oryzanol from 1543 ± 26 to 25611 ± 2571 mg/kg oil, but the CNOs did not 259 

contain oryzanol. The RBO samples had the same types of minor constituents but had 260 

significant differences in content (p<0.05). According to a previous study (Schwartz, 261 

Ollilainen, Piironen, & Lampi, 2008), the tocopherol contents of coconut oil are the 262 

lowest compared to other oils, which was consistent with the present result. The 263 

content of phytosterol in RBO was higher than that in CNO, and the content of 264 

β-sitosterol was higher in RBO than CNO. The polyphenols in CNO-J could not be 265 

detected. The content of total phenolic compounds was low but the content of 266 

oryzanol was high, which might be due to the incomplete extraction of oryzanol by 267 

methanol. Based on the above analyses, minor constituent contents in CNO were 268 

significantly lower than those of RBO (p<0.05). 269 
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3.2 Emulsion characterization  270 

3.2.1 Mean particle size, PDI, and zeta potential 271 

The results of the emulsion characterizations are shown in Figure 1. The mean 272 

particle sizes were all approximately 250 nm as shown in Fig. 1(a). The mean particle 273 

sizes of the RBO-S, CNO-C, and CNO-J emulsions had no significant difference 274 

(p>0.05), but the three RBO emulsions showed significant differences (p<0.05), 275 

indicating the different degree of influence of different oils on the physical properties. 276 

PDI represents a dimensionless measurement of the drop size distribution amplitude 277 

(Ricaurte, Perea-Flores, Martinez, & Quintanilla-Carvajal, 2016). The emulsions 278 

exhibited a PDI value below 0.2 with no significant difference among the oils (p>0.05) 279 

as shown in Fig. 1(b). These results indicated that the polydisperse particles are 280 

somewhat suitable (Yen, Wu, Lin, Cham, & Lin, 2008).  281 

The surface charge of the droplets in the emulsion containing RBO and CNO is 282 

shown in Figure 1(c). There was no significant difference (p>0.05) of zeta potential 283 

among RBO-S, CNO-C, and CNO-J emulsions. In addition, the zeta potentials of the 284 

oil emulsions were more negative than -30 mV. These values are generally considered 285 

to be stable, indicating a strong electrostatic repulsion of the dispersed oil droplets in 286 

the aqueous phase, which were predominant in the emulsions (Heurtault, Saulnier, 287 

Pech, Proust, & Benoit, 2003). There was a difference in the zeta potential of 288 

emulsions prepared from different oils, which may be due to the differences between 289 

dissociation degree of the emulsifier and the amount of ionizable compounds of the 290 

oils, thereby affecting the adsorption of the surface-active compound at the two-phase 291 
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interface (Bonilla, Atarés, Vargas, & Chiralt, 2012; Salvia-Trujillo, Rojas-Graü, 292 

Soliva-Fortuny, & Martin-Belloso, 2015). RBO emulsions with long-chain 293 

unsaturated triglycerides had a more negative zeta potential than that of CNO 294 

emulsions, which may be related to a higher number of negatively charged particles 295 

(Celus, Salvia-Trujillo, Kyomugasho, Maes, Van Loey, Grauwet, & Hendrickx, 2018). 296 

The pH value of the emulsion (6.5) was higher than the pH value of the fatty acid 297 

(4.8-5), resulting in ionization of its carboxyl group. The free fatty acid in RBO was 298 

more easily ionized, resulting in a more negative charge. For anionic polymers, 299 

smaller particles have higher mobility than larger particles, allowing smaller 300 

electrophoretic particles to move faster (Celus, Salvia-Trujillo, Kyomugasho, Maes, 301 

Van Loey, Grauwet, & Hendrickx, 2018), which may explain the smaller average 302 

particle size but more negative potential value of the RBO-P emulsion. The stability 303 

of the emulsions was measured with droplet size and zeta potential (Ricaurte, 304 

Perea-Flores, Martinez, & Quintanilla-Carvajal, 2016).  305 

3.2.2 Droplet size distribution of oil emulsions 306 

The results of the droplet size distribution are shown in Figure 1(d). The different 307 

emulsions had a slight effect on the mean particle size. Intensity (%) represents the 308 

relative strength of the measured intensity of droplets of different particle sizes in the 309 

emulsion system, and the measured intensity shows that the strongest particle size 310 

value is close to the average particle size. The particle size distributions of RBO-D, 311 

RBO-P, and RBO-S were unimodal with gradual widening. However, the particle size 312 

distributions of CNO-C and CNO-J were unimodal and narrow. Thus, the droplet size 313 
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distribution of CNO emulsions was better than that of RBO emulsions. The final 314 

droplet size of the emulsion was the result of complex interactions among processing 315 

conditions, emulsifiers, and oil droplet adsorption (Wooster, Golding, & Sanguansri, 316 

2008). It has been reported that the molecular characteristics, such as molecular 317 

weight, polarity and concept, of oil are important factors in determining the ability to 318 

bind to surfactants (Djekic & Primorac, 2008). Oils with higher concentrations of 319 

polar components may reduce the interfacial tension and result in droplet breakage 320 

during homogenization, which allows the oils to dissolve in the aqueous phase, 321 

resulting in a particle size distribution intensity peak of larger droplets (Ziani, Fang, & 322 

Mcclements, 2012). RBO had more abundant minor constituents with strong polarity 323 

than CNO. RBO-S, which was rich in minor constituents, had a wider intensity peak 324 

as shown in Figure 1(d). RBO was rich in long-chain triglycerides with larger 325 

molecular weight than CNO. CNO had medium-chain triglycerides, which may 326 

explain why RBO was more prone to form larger droplets. Because the emulsions 327 

were produced under the same conditions, their droplet size distribution results were 328 

related to the composition of the oil. 329 

3.3 Cytotoxicity effects and antioxidant properties 330 

In this study, the CAA assay using ABAP-induced peroxyl radicals in HepG2 cells 331 

was conducted to quantify the cellular antioxidant ability of oil emulsions by 332 

preventing the formation of DCF from oxidation determined by the decrease of 333 

fluorescence (Meng et al., 2017). As shown in Figure 2, the kinetics of DCFH 334 
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oxidation in HepG2 cells by peroxyl radicals generated from ABAP was measured for 335 

oil emulsions. The increase in fluorescence due to the DCFH oxidation was inhibited 336 

by oil emulsions in a dose-dependent manner as demonstrated by the curves generated 337 

from HepG2 cells treated with five oil emulsions. These results were consistent with 338 

those observed for Chinese hawthorn (Wen et al., 2015) and black tea (Liu & Huang, 339 

2015).  340 

Dose-response curves from the ratio of the area under the curve of the oil emulsion 341 

sample to that of the blank and control indicated the inhibition of peroxyl 342 

radical-induced DCFH oxidation by the five oil emulsions (Fig. 3). The R2 values 343 

were all greater than 0.9, indicating good dose-effect relationships. To calculate the 344 

corresponding EC50, the median effect curve was plotted for each oil emulsion (Fig. 345 

4). The EC50 of quercetin, as the equivalent weight, was 4.91 µM (R2 = 0.9841) in this 346 

study. 347 

Table 3 shows that HepG2 cell proliferation was >90% for 0-20 mg/mL (RBO-S), 348 

0-50 mg/mL (RBO-P), greater than 20 mg/mL (CNO-C), and 40 mg/mL (RBO-D and 349 

CNO-J). Therefore, we used these results as references to determine the CAA value 350 

within the safe concentration range of various samples. The EC50 of RBO emulsions 351 

and CNO emulsions were 5.9 ± 0.2 mg/mL (RBO-D), 4.6 ± 0.3 mg/mL (RBO-P), 0.6 352 

± 0.1 mg/mL (RBO-S), 4.6 ± 0.3 mg/mL (CNO-C), and 6.4 ± 0.2 mg/mL (CNO-J). 353 

The intra experimental coefficient of variation (CV) for the RBO-S reached 16.7% 354 

and was significantly higher than the CV of the other four samples, which were below 355 

10%. The CAA unit of these five oil emulsions from high to low were 846.6 ± 0.6 356 
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µmol of QE/100 mg oil (RBO-S) > 107.2 ± 0.2 µmol of QE/100 mg oil (CNO-C) ≈ 357 

106.1 ± 0.4 µmol of QE/100 mg oil (RBO-P) > 83.7 ± 0.4 µmol of QE/100 mg oil 358 

(RBO-D) > 76.7 ± 0.2 µmol of QE/100 mg oil (CNO-J) (Table 3). These results 359 

indicated that RBO-S showed the highest antioxidant ability against the 360 

ABAP-generated peroxyl radicals by preventing the oxidation of DCFH and 361 

membrane lipids, which decreased the formation of DCF in HepG2 cells. CNO-C and 362 

RBO-P had the next highest antioxidant abilities but showed no significant 363 

differences (p>0.05).  364 

Both RBO-D and RBO-P emulsions exhibited significantly lower cellular 365 

antioxidant ability than RBO-S emulsions (p<0.05), which may have been due to the 366 

large amount of minor constituents in RBO-S, especially polyphenols. The CAA 367 

value of the CNO-C emulsion was close to that of the RBO-P emulsion but higher 368 

than that of the RBO-D emulsion, indicating that medium-chain and saturated 369 

triglycerides improve the uptake and bioavailability of antioxidant ingredients into 370 

HepG2 cells (Fan, Liu, Gao, Zhang, & Yi, 2018). Oil composed of medium-chain 371 

triglycerides is more readily digested and absorbed than oil composed of long-chain 372 

triglycerides (Takeuchi, Sekine, & Seto, 2008). In addition to the influence of the 373 

surface ultrastructure of the cell, transporter mRNA expression or enzyme activity, 374 

fatty acids with different chain lengths and saturation have different regulatory 375 

pathways. For example, long-chain fatty acids (stearic acid and trans10, cis 12 376 

conjugated linolenic acid) tend to regulate extracellular matrix-receptor interactions 377 

(Yan, Tang, Zhou, Han, & Tan, 2019). Moreover, it has been reported that 378 
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polyunsaturated fatty acids have a significant effect on cell membrane fluidity, while 379 

palmitic acid does not affect membrane fluidity (Nano, Nobili, Girard-Pipau, & 380 

Rampal, 2003). The distributions of polyunsaturated fatty acid and minor constituents 381 

in triacylglycerol may affect the functions of vegetable oils (Yalagala, Sugasini, 382 

Ramaprasad, & Lokesh, 2017). In the polyunsaturated fatty acid emulsion system, 383 

such as in the RBO emulsions, high concentration of α-tocopherol self-assembles to 384 

form micelles, which reduces the tocopherol content at the oil-water interface and 385 

reduces its antioxidant capacity (Huang, Frankel, Schwarz, & German, 1996).  386 

 387 

4. Conclusion 388 

Different types of triglycerides affected the emulsion physical properties. Oils with 389 

medium-chain saturated triglycerides easily formed emulsions with concentrated 390 

droplet size distribution. In contrast, oil emulsions rich in long-chain unsaturated 391 

triglycerides showed a more dispersed droplet size distribution. 392 

Different triglycerides also affected the cellular antioxidant properties of the whole 393 

oil emulsion. The same vegetable oils, containing the same triglycerides, had different 394 

cellular antioxidant capacity due to the composition and content of the minor 395 

constituents. Medium-chain and saturated triglycerides in vegetable oil emulsions 396 

resulted in strong CAA despite the lower amounts of minor constituents. The result of 397 

the CAA was due to the combined effects of triglycerides and minor constituents of 398 

the vegetable oil, which also demonstrated the necessity to study the antioxidant 399 

properties of whole oils and whole foods.  400 
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Our next study on the cellular antioxidant properties of vegetable oils influenced by 401 

triglycerides with different carbon chain lengths or different saturation will provide 402 

additional knowledge when choosing more typical vegetable oils. 403 

  404 
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Table 1 Fatty acid, triglyceride composition of five vegetable oils. 

 RBO-D RBO-P RBO-S CNO-C CNO-J 
Fatty acid composition (%)  

C6:0 - - - 0.34 ±0.01 a - 
C8:0 - - - 5.59 ± 0.02 a - 
C10:0 - - - 5.20 ± 0.37 a - 
C12:0 - - - 46.78 ± 0.28 a - 
C14:0 0.26 ± 0.01 a 0.27 ± 0.01 a 0.23 ± 0.01 a 19.97 ± 0.22 b 0.26 ± 0.01 a 
C16:0 17.04 ± 0.26 b 17.02 ± 0.13 b 17.16 ± 0.01 b 10.29 ± 0.07 a 17.04 ± 0.26 b 
C16:1 0.15 ± 0.00 a 0.12 ± 0.00 a 0.12 ± 0.01 a - 0.15 ± 0.00 a 
C18:0 1.29 ± 0.02 a 1.39 ± 0.01 a 1.42 ± 0.01 a 3.26 ± 0.03 b 1.29 ± 0.02 a 
C18:1 41.89 ± 0.15 b 41.95 ± 0.07 b 41.56 ± 0.02 b 7.09 ± 0.11 a 41.89 ± 0.15 b 
C18:2 37.37 ± 0.48 b 37.50 ± 0.47 b 37.53 ± 0.11 b 1.53 ± 0.04 a 37.37 ± 0.48 b 
C18:3 1.08 ± 0.01 a 1.11 ± 0.11 a 1.30 ± 0.01 - 1.08 ± 0.01 a 
C20:0 0.25 ± 0.00 a 0.15 ± 0.05 a 0.18 ± 0.01 a - 0.25 ± 0.00 a 
SFA 18.83 ± 0.34 a 18.82 ± 0.10 a 18.98 ± 0.02 a 91.43 ± 0.08 b 18.83 ± 0.34 a 

PUFA 38.44 ± 0.66 b 38.60 ± 0.47 b 38.83 ± 0.13 b 1.53 ± 0.04 a 38.44 ± 0.66 b 
MUFA 42.03 ± 0.21 b 42.07 ± 0.07 b 41.67 ± 0.03 b 7.09 ± 0.11a 42.03 ± 0.21 b 
UFA 80.47 ± 0.45b 80.67 ± 1.02 b 80.50 ± 0.10 b 8.62 ± 0.32 a 80.47 ± 0.45b 

ECN(%)  
28 - - - - - 
30 - - - 1.97 ± 0.15 a - 
32 - - - 12.37 ± 0.13 a - 
34 - - - 16.99 ± 0.14 a - 
36 - - - 20.27 ± 0.88 a - 
38 - - - 17.33 ± 0.28 a - 
40 - - - 11.59 ± 0.21 a - 
42 2.71 ± 0.04 a 2.78 ± 0.07 a 3.06 ± 0.06 a 7.21 ± 0.18 b 2.71 ± 0.04 a 
44 29.55 ± 0.04 a 28.38 ± 0.06 a 29.08 ± 0.55 a 2.44 ± 0.13 b 29.55 ± 0.04 a 
46 47.03 ± 1.00 a 47.19 ± 0.31 a 46.70 ± 0.04 a 3.47 ± 0.09 b 47.03 ± 1.00 a 
48 20.71 ± 0.92 a 21.66 ± 0.30 a 21.16 ± 0.58 a 1.40 ± 0.12 b 20.71 ± 0.92 a 
50 - - - 0.57 ± 0.09 a - 
52 - - - 0.52 ± 0.02 a - 

* SFA saturated fatty acids, PUFA polyunsaturated fatty acids, MUFA monounsaturated fatty acids, UFA unsaturated fatty acids, “-” not detected. The equivalent carbon number (ECN) is equal to the 
total number of carbon atoms in the fatty acid minus twice the number of double bonds. The data in the table is the mean ± standard deviation, "-" represents no detectable; the different letters in 
the peer represent a significant difference (p<0.05). 
 
 



Table 2 Minor constituent composition of five vegetable oils. 

 RBO-D RBO-P RBO-S CNO-C CNO-J 
Oryzanol (mg/kg oil) 
 1543 ± 26 a 5605 ± 137 b 25611 ± 2571 c - - 
Tocopherols (mg/kg oil) 

α- Tocopherol 60 ± 2 a 245 ± 13 c 214 ± 1 b 3 ± 0 d 3 ± 0 d 
β- Tocopherol - - - - - 
γ- Tocopherol - - - - - 
δ- Tocopherol - - - - - 
Total tocopherol 60 ± 2 a 245 ± 13 c 214 ± 1 b 3 ± 0 d 3 ± 0 d 

Phytosterols (mg/kg oil) 
△

5- Campesterol 701 ± 4 a 1114 ± 51 b 1488 ± 51 c 25 ±1 d 24 ± 1 d 
Stigmasterol 499 ± 21 a 793 ± 33 b 873 ± 46c 43 ± 3 d 38 ± 0 d 
β- sitosterol 2664 ± 94 a 3669 ± 165 b 3933 ± 167 c 118 ± 4 d 124 ± 1 d 
Fucosterol 302 ± 12 b 240 ± 9 a 383 ± 54c 40 ± 2 d 42 ± 1 d 
Total sterol 4167 ± 249 a 5819 ± 258 b 6677 ± 315 c 225 ± 10 d 228 ± 4 d 

Polyphenols (mg GAE/kg oil) 
 21 ± 1 a 60 ± 2 b 198 ± 7 c 4 ± 0 d - 
* The data in the table is the mean ± standard deviation, "-" represents no detectable; the different letters in the peer represent a significant difference (p<0.05). 
 



Table 3 EC50 values for the inhibition of peroxyl radical-induced DCFH oxidation by five 

vegetable oil emulsions (mean±SD, n=3) and their cytotoxic concentrations. 

 
EC50 

A CV (%) Cytotoxicity B CAA (µmol of QE/100 mg oil) 

Quercetin 4.9 ± 0.1 2.0 32  

RBO-D 5.9 ± 0.2 b 3.4 >40 83.7 ± 0.4 b 

RBO-P 4.6 ± 0.3 c 6.5 50 106.1 ± 0.4 c 

RBO-S 0.6 ± 0.1 d 16.7 20 846.6 ± 0.6 d 

CNO-C 4.6 ± 0.3 c 6.5 >20 107.2 ± 0.2 c 

CNO-J 6.4 ± 0.2 a 3.1 >40 76.7 ± 0.2 a 

A The EC50 value of quercetin is expressed as µmol and the EC50 value of RBO-D, RBO-P, RBO-S, CNO-C, and 

CNO-J emulsions are expressed as mg/mL.  

B The cytotoxicity value of quercetin is expressed as µmol and the cytotoxicity value of RBO-D, RBO-P, RBO-S, 

CNO-C, and CNO-J emulsions are expressed as mg/mL. QE is quercetin equivalents. 

*Different lowercase letters indicate significant differences (p<0.05). 

 

 



 

Fig. 1. (a) Mean particle size, (b) PDI and (c) zeta potential (d) droplet size distribution of RBO-D, 

RBO-P, RBO-S, CNO-C, and CNO-J emulsions obtained using high homogenizing pressures (60 

MPa, 3 cycle times). *Different letters indicate significant differences (p<0.05) of the mean 

particle size, PDI or zeta potential between five oil emulsions. 

 

 

  



 

Fig. 2. Peroxyl radical-induced oxidation of DCFH to DCF in HepG2 cells and the inhibition of 

oxidation by RBO-D, RBO-P, RBO-S, CNO-C, and CNO-J emulsions over time. The curves 

shown in each graph are from a single experiment (mean ± SD, n = 3). 

 

  



 

Fig. 3. Dose-response curves for inhibition of peroxyl radical-induced DCFH oxidation by RBO-D, 

RBO-P, RBO-S, CNO-C, and CNO-J emulsions. The curves shown are each from a single 

experiment (mean ± SD, n = 3). 

 

  



 

Fig. 4. Median effect plots for inhibition of peroxyl radical-induced DCFH oxidation by RBO-D, 

RBO-P, RBO-S, CNO-C, and CNO-J emulsions. The curves shown are from a single experiment 

(mean ± SD, n = 3). 

 

 



Highlights: 

� Emulsions rich in long-chain unsaturated triglycerides are more dispersed in size 

distribution. 

� Oil with medium-chain saturated triglyceride is easier to result in strong CAA in 

oil emulsions. 

� The result of CAA was the combined effects of triglycerides and micronutrients 

of the vegetable oil  
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