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Abstract

Lipid concomitants are the main trace substancasdistermine the oxidative stability
of oils. Over 90% of oils are composed of triglydes, which affect oxidative
stability. Oils typically enter living organism asulsions. This study investigated the
physical properties and cellular antioxidant aggiyCAA) of emulsions in two model
oils, namely, rice bran oil (RBO) with long-chaimsaturated triglycerides and
coconut oil (CNO) with medium-chain saturated yagirides.The results were as
follows: the mean particle sizes were all approxehya250 nm; the polydispersity
index (PDI) values were below 0.2; and the zetamal values were more negative
than -30 mV. The droplet size distribution of CN@dsions was more concentrated
than that of RBO emulsions. Rice bran o0il-S (RBQGeBulsions exhibited the highest
CAA value, but the CAA value of coconut oil-C (CND-emulsions was higher than
that of rice bran oil-D (RBO-D) emulsions, indicagi that CAA was influenced by
the combined effect of triglycerides and minor ¢duoents. Moreover, the
medium-chain saturated triglycerides in vegetallleraulsions resulted in a stronger

CAA than that of long-chain saturated triglycerides

Keywords. Emulsion; Triglycerides; Cellular antioxidant adty; Rice bran oil;

Coconut oil
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1. Introduction

In recent years, research on whole food, contaiaingturally occurring a mixture
of phytochemicals and antioxidant compounds, far #melioration of oxidative
status, not a single compound, has received widadpattention (Johar et al, 2018).
Vegetable oils contain abundant and biologicallyivecminor constituents, such as
polyphenols, sterols, oryzanol, and tocopherolsgdSi Nogala-Kalucka, &
Lampart-Szczapa, 2008; Koztowska, Gruesia, Scibisz, & Rudzhska, 2016), and
they also contain 90-98% glycerides, are mainly posed of different chain lengths
and saturation of triglycerides (Rao, 2001; Yalagabugasini, Ramaprasad, &
Lokesh, 2017). Although minor constituents havenbakvays used to indicate the
antioxidant property of vegetable oils (Szydlowskzerniak & Laszewska, 2015), the
oil itself, such as the type of triglycerides, naffect the overall measurement result.
(Palova, Charvat, & Kvapil, 2008). In addition, ahgated fatty acids with double
bonds are easily attacked by free radicals (Me€oRaikos, 2017). Peony seed oil
possesses a potent scavenging effect against &dieals as well as in vivo
antioxidant capacity, which is related to fairlyM@atio of n-6 to n-3 polyunsaturated
fatty acids originating from its uncommon abundaimce-linolenic acid (Yang et al.,
2017). Phenolic compounds display different prapsrin different plant matrices
(Aalim, Belwal, Wang, Luo, & Hu, 2018). Therefomfferent triglycerides systems
may affect the antioxidant activity of the activengounds in vegetable oils.
Moreover, some functional foods are developed basedombinations of different

vegetable oils, such as in the preparatiortrahs{ree structure lipids (Lakum &
3



o7

o8

99

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

Sonwai, 2018), and the production of saturatedddt:ced processed cheese products
based on lipid composition. The principle may imelthe differences in the
interaction between the fatty acids of vegetable and the protein network structure
(Huang, Hallinan, & Maleky, 2018). In processeddspvegetable oils are mostly
stabilized in the form of emulsions, which imprdte function and quality of the oil.
Whether consumed as a whole food or edible oll, ititake, absorption, and
metabolism of oil in the body are completed in @as emulsion forms as lipolysis
takes place at the oil-water interface (Drewnowssklmiron-Roig, 2010; Gallier &
Singh, 2012). It has been previously reported thattype and polarity of the lipid
phase in emulsions significantly affect the antilaxit activity of active compounds
(Hopia, Huang, Schwarz, German, & Frankel, 1996)er&fore, it is important to
investigate the effects of triglycerides with difat chain lengths and saturation on
the antioxidant capacity of whole vegetable oilstlie form of emulsions, which
represents the form that the body intakes.

Emulsions allow incorporation of high nutritionahlue oils, such as high-oleic
palm oil (Ricaurte, Perea-Flores, Martinez, & Qamba-Carvajal, 201} linseed oil
(Sotomayor-Gerding et al., 2016) or clove essenilawith high in vitro bactericidal
action, thus improving their bioavailability (SavTrujillo, Rojas-Grad,
Soliva-Fortuny, & Martin-Belloso, 2015). Emulsiomaprove the functionalities of
vegetable oils due to reduced droplet size, whichelases the specific surface area.
Emulsions are kinetically stable colloidal dispers that aid oils to overcome water

insolubility and instability, simultaneously enharg cellular uptake of oils (Solans,
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Izquierdo, Nolla, Azemar, & Garcia, 2005; Ma, YunyYTang, & Yang, 2018). There
are many factors that affect emulsion propertieshsas environmental conditions
(Salvia-Trujillo, Rojas-Grail, Soliva-Fortuny, & Mar-Belloso, 2015), system
components (including different oils composed afiaas triglycerides with different
chain lengths and saturation degrees), and enarl$jfpe. One of the commonly used
emulsifiers in the formation and stabilization ehw@sions is whey protein isolate
(WPI), which is natural and adsorbs more easilytha&t oil-water interface, thus
preventing droplets from aggregating by generatrmegulsive interactions and
forming stabilizing emulsions during homogenizati@@zturk, Argin, Ozilgen, &
McClements, 2015; Li et al, 2019).

The following chemical assays are often used terdehe the antioxidant ability
of oil extracts: oxygen radical absorbance capacifORAC), 2,
2-diphenyl-1-picrylhydrazyl (DPPH), and 2, 2'-azibis,
3-ethylbenzthiazoline-6-sulfonic acid (ABTS) (SBheng, Jin, & Wang, 2017; Liu et
al., 2019). However, the cellular antioxidant aicgi¢(CAA) assay is a common model
for evaluating antioxidant function at a biologitadel. Measurement of the ability of
compounds to prevent the formation of fluoresceichldrofluorescein by 2,2
-azobis (2-amidinopropane) dihydrochloride (ABARgrated peroxyl radicals in
HepG2 cells allows quantification of the CAA of @igy supplements, foods and
phytochemicals. This reaction of cellular biocheshiprocesses includes uptake,
distribution, bioavailability and metabolism of thatioxidant components (Wolfe &

Liu, 2017; Liu et al., 2019).
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Rice bran oil (RBO) is a type of nutritionally ricbil, mainly composed of
long-chain unsaturated fatty acids. The fatty awdanposition of RBO is mainly
composed of oleic, linoleic, and palmitic acids.®Bontaingy-oryzanol, tocopherols,
and sterols, which have many bioactive abilitiesie@fman & Mendel, 2013;
Piriyaprasarth, Juttulapa, & Sriamornsak, 2016).cadot oil (CNO) is a rare
vegetable oil, mainly composed of medium-chain redga triglycerides, which are
easily absorbed into the body and stable againdaban, thus not prone to peroxide
formation (Bhatnagar, Prasanth Kumar, Hemavath@apala Krishna, 2009).

In this study, RBO and CNO were selected as typdal with different types of
triglycerides, and the CAA model was exploited tompare the cellular antioxidant
properties of whole oil in the form of emulsionseVdimed to explore the effects of
different triglyceride systems on the cellular aritlant properties of whole vegetable
oil emulsions, which may provide a theoretical refee for the combination of
triglycerides and minor constituents from the pecsiye of the antioxidant property

of the vegetable oil.

2. Material and methods

2.1 Samples and materials

2.1.1 Samples
The following rice bran oils were used: RBO-D (4dhep), RBO-P (Jiangsu), and

RBO-S (Jiangsu). The following coconut oils wereedisCNO-C (Shanghai) and
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CNO-J (Philippines). Rice bran oils (RBOs) and eadooils (CNOs) from different
origins were all purchased from supermarkets.
2.1.2 Materials and chemicals

Whey protein isolate (WPI; Cheshire, UK, CW97RA)swaurchased from Hilmar
Food International, Inc. (Livingston, CA). Standatracopherols -, B-, y- and
d-isomers; purity>95%), oryzanol,a&holestane, 2 7-dichlorofluorescin diacetate
(DCFH-DA), methylene blue dye solution, quercetind glutaraldehyde solution FL
were obtained from Sigma-Aldrich Chemical Co. (Sitem, China). 2, -azobis
(2-amidinopropane) dihydrochloride (ABAP) was puaséd from Wako Chemicals
Co. (Shanghai, China). Hanks’ Balanced Salt Satui$BSS), Dulbecco’s minimum
EM (DMEM), foetal bovine serum (FBS), streptomycirpenicillin, and
phosphate-buffered saline (PBS) solution were abthi from Gibco Life
Technologies (Grand Island, NY). Folin-CiocaltelCjReagent, sodium carbonate,
acetic acid, methanol, ethanol, and other chemiaasee obtained from Chemical
Reagent Company (Shanghai, China). HepG2 cells aagaired from the American

Type Culture Collection (Rockville, MD).

2.2 Determination of RBO and CNO composition

2.2.1 Determination of triglycerides and fatty exicbmposition
The equivalent carbon number (ECN) of triglyceridesas detected by
HPLC-ELSD. Briefly, 20uL of sample was injected at flow rate of 0.8 mL/min

Mobile phase A was acetonitrile, and mobile phaseaB isopropanol. The following
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elution procedure was performed: 0-30 min, 70% A@3B linearity becomes 60%
A/40% B; 30-70 min, 60% A/40% B linearly become®®658/45% B; 70-90 min, 55%
A/45% B is kept constant; and 90-95 min, linearharged to 70% A/30% B. The
area normalization method was used for quantificatFatty acid composition was
determined using a GC-14B gas chromatography (Stamarokyo, Japan) equipped
with a flame ionization detection (FID) (Agilenty greviously described (Amaral,
Cunha, Alves, Pereira, Seabra, & Oliveira, 2004 whe following parameters: FID
temperature of 250 °C; inlet temperature of 250 $flit ratio of 1:50; temperature
programming process at 80 °C for 3 min followed1®y°C/min to 215 °C and hold
20 min; acquisition time of 30 min; and injectioolyme of 2.0uL.
2.2.2 Determination of minor constituent content

Tocopherols were determined using high-performahgeid chromatography
(HPLC) (LC-20AT; Shimadzu, Kyoto, Japan) (Gao, Jiny, Jin, & Wang, 2018).
The following parameters were used: column tempegadf 30 °C; mobile phase of
hexane/isopropanol (98.5/1.%y); rate of 1.0 mL/min; and determining wavelength
at 295 nm. Oryzanol was determined using HPLC il following parameters:
column temperature of 40 °C; mobile phase of ethammte of 0.8 mL/min; and
determining wavelength at 324 nm (Liu et al., 20Bgrols were determined using a
gas chromatography-mass spectrometry (GC-MS) sy§iémarmo Fisher) equipped
with a FID (Thermo Fisher) following the method &ih et al (2016). The total
phenolic content of the oil extracts was measurgdguthe Folin-Ciocalteu method

(Gomez Caravaca, Carrasco Pancorbo, Cafiabate [Siegyra Carretero, &
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Fernandez Gutiérrez, 2005). Oil (1.5 g) was dis=mblin 6 mL of hexane and was
passed through a Diol-SPE column, leaving the sanmpl the solid phase. The
column was washed with two portions (of 3 mL) okéwee. Finally, the sample was
recovered by passing through 6 mL of methanol teaek phenolic compounds from

oils.

2.3 Preparation of emulsions

Emulsions were prepared according to a previowgpnted method (Ozturk, Argin,
Ozilgen, & McClements, 2015) with minor adjustmerimulsions were prepared by
high pressure homogenizing 10%/\{) of lipid phase (RBO or CNO) with 90%v{w)
of aqueous phase. The aqueous phase consisteafoi¥s (w/v) emulsifier (WPI),
which was stirred at room temperature overnightX20) to fully hydrate. Coarse
emulsions were obtained by blending both oil anatgin solution together using a
high-speed blender (T25, IKA, Germany) for 2 min18000 rpm, and they were
passed through a high-pressure homogenizer (01CKOQ-GEA, Germany) for 60

MPa and 3 cycle times to gain proper emulsions.

2.4 Determination of emulsion physical properties

Based a previous repdi&alvao, Vicente, & Sobral, 2017), the mean pagtgike,
PDI, and droplet size distribution of RBO and CNf@uisions were measured by
dynamic light scattering (DLS), and the zeta po#&ntvas determined by
phase-analysis light scattering (PALS). All deterations were made using a

multi-angle particle size and high sensitivity z@t@tential analyser (Nano Brook

9
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Omni; Brookhaven Instruments, USA). The mean partsize of each emulsion was
represented as the surface-weighted mean dianvétesh was calculated from the
full particle size distribution. The refractive ixi of oil droplets and water phase
were set to 1.450 and 1.330, respectively. To awuittiple scattering influences, the
emulsions were diluted 100-fold with ultrapure wateefore measurement. The
measurements were performed at a fixed angle of @@f were performed in

triplicate.
2.5 Cell culture

HepG2 cells were cultured in growth medium conteinDMEM/FBS/antimycotic
solution (90:10:1,v/vi) and incubated at 37 °C and 5% L @ells used were

between passages 26 and 35.
2.6 Cytotoxicity analysis

Following a previously reported method (Wolfe & L2017), the methylene blue
assay was used to assess the potential toxic ®i¢dhe RBO and CNO emulsions
on HepG2 cells. HepG2 cells were seeded at 3*4v&0 in a 96-well plate in 10QL
of growth medium and incubated at 37 °C for 24 imuksion treatments in 1Q€L of
medium were applied to cells followed by incubatair37 °C for 24 h. A volume of
50 pL/well of methylene blue staining solution (98% HBS0.67% glutaraldehyde,
and 0.6% methylene blue) was applied to each w#bvied by incubation at 37 °C
for 1 h. After washing the wells using water, 1000f elution solution (49% PBS, 50%

ethanol, and 1% acetic acid) was added to each amd the plate was placed on a

10
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bench-top shaker for 20 min to allow uniform elati®Absorbance was read at 570
nm using the Multiskan Go microplate reader (Thei®oeentific, USA). Emulsions
were not considered to be cytotoxic if their absode was >90% compared to the

control.
2.7 Cellular antioxidant activity assay

The CAA assay was used to assess the cellularxatdr ability of the RBO and
CNO emulsions in HepG2 cells following a previousdported procedure (Wolfe &
Liu, 2017).HepG2 cells were seeded at 6%&@ll in a 96-well black microplate with
clear bottom, and 10@QL of medium was added to every well. The plate was
incubated at 37 °C and 5% gfor one day. Medium was then discarded, and wells
were washed thoroughly with PBS solution. Mediur@Q(itL) was then added with
corresponding concentrations of oil emulsions articds containing DCFH-DA (50
uM) into triplicate wells. After incubation, the smion was removed, and cells were
washed with PBS. Finally, 106L of HBSS containing ABAP (60QM) was added
into the wells, and the microplate was placed atduoroskan Ascent FL microplate
reader (Thermo Scientific, USA). Fluorescence a #xcitation and emission
wavelengths of 535 nm and 485 nm, respectively, waasured at 37 °C every 5 min
(13 times in total).

CAA (units) was calculated according to the projpmd under the fluorescence
against time curve according to the following fotenu

JSA—[BA

CAA(%) =100 — ——F—
(%) [CA—[BA

100

11



227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

whereISA, J'CA and IBA are the integral areas under the fluorescencenstgai

time curve of the sample, control and blank, respely.

The median effective dose (Eff was determined for the oil emulsions according
to the median effect plotting of log (fa/fu) verdag (dose), in which fa is the part
affected (CAA unit) and fu is the part unaffectdd@CAA unit). The EG values

were expressed as pumol quercetin of per 100 d @fimiol QE/100 g).
2.8 Statistical Analyses

All analyses were performed in triplicate and espesl as the mean + standard
deviation (mean + SD). SPSS version 20.0 was usednalyse variance, and
significant differences determined by ANOVA werarsficant at the 5% level

(p<0.05). Duncan’s post-hoc tests were performedguSIASS version 20.0.

3. Results and discussion
3.1 Composition of RBO and CNO

3.1.1 Triglycerides and fatty acids composition

The five oils used for the study were analysedfdttly acid composition and ECN
as shown in Table 1. The compositions of fatty a@gndlRBO samples were myristic
acid (C14:0), palmitic acid (C16:0), palmitoleicida¢C16:1), stearic acid (C18:0),
oleic acid (C18:1), linoleic acid (C18:2), linolenacid (C18:3), and arachidic acid
(C20:0), which had no significant differencgs.05). The data analysed here agreed

with a previous literature report (Gopala Krishilemakumar, & Khatoon, 2006).
12
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Moreover, the unsaturated fatty acids content re&@0%. ECN is defined as the
carbon number of the hypothetical saturated trigiigle, which elutes at the same
retention time as the unsaturated triglyceride ¢pastudied (Podlaha & Bengt, 2015).
The ECN of RBO samples, which also had no signitichfferences >0.05), were
42, 44, 46, and 48. However, the ECN of CNO samplese 36, 38, and 34. In
addition, the CNO had highest content of lauridg€12:0; reached 46%) followed
by myristic acid (14:0) and palmitic acid (16:0hel content of saturated fatty acids
(SFA) in CNO reached 90%, which was consistent &ithrevious literature report
(Bhatnagar, Prasanth Kumar, Hemavathy, & Gopalahfa, 2009).
3.1.2 Minor constituent levels

The minor constituent analyses results present8alie 2 showed that the RBOs
all had oryzanol from 1543 + 26 to 25611 + 2571 kggoil, but the CNOs did not
contain oryzanol. The RBO samples had the sames typminor constituents but had
significant differences in conterp<0.05). According to a previous study (Schwartz,
Ollilainen, Piironen, & Lampi, 2008), the tocophleomntents of coconut oil are the
lowest compared to other oils, which was consisteith the present result. The
content of phytosterol in RBO was higher than timatCNO, and the content of
B-sitosterol was higher in RBO than CNO. The polypiie in CNO-J could not be
detected. The content of total phenolic compounds Ww but the content of
oryzanol was high, which might be due to the inclatgpextraction of oryzanol by
methanol. Based on the above analyses, minor ta@sticontents in CNO were

significantly lower than those of RB@<0.05).

13



270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

3.2 Emulsion characterization

3.2.1 Mean particle size, PDI, and zeta potential

The results of the emulsion characterizations &@va in Figure 1. The mean
particle sizes were all approximately 250 nm aswshim Fig. 1(a). The mean particle
sizes of the RBO-S, CNO-C, and CNO-J emulsions madsignificant difference
(p>0.05), but the three RBO emulsions showed signiticdifferences p<0.05),
indicating the different degree of influence offeient oils on the physical properties.
PDI represents a dimensionless measurement ofrtigesize distribution amplitude
(Ricaurte, Perea-Flores, Martinez, & Quintanillaa@gal, 2016). The emulsions
exhibited a PDI value below 0.2 with no significalifference among the oilp*0.05)
as shown in Fig. 1(b). These results indicated thaet polydisperse particles are
somewhat suitable (Yen, Wu, Lin, Cham, & Lin, 2008)

The surface charge of the droplets in the emulsmmaining RBO and CNO is
shown in Figure 1(c). There was no significanteatignce [(>0.05) of zeta potential
among RBO-S, CNO-C, and CNO-J emulsions. In additibe zeta potentials of the
oil emulsions were more negative than -30 mV. Thedees are generally considered
to be stable, indicating a strong electrostatialgpn of the dispersed oil droplets in
the aqueous phase, which were predominant in thdsemns (Heurtault, Saulnier,
Pech, Proust, & Benoit, 2003). There was a diffeeem the zeta potential of
emulsions prepared from different oils, which ma&ydue to the differences between
dissociation degree of the emulsifier and the arhofinonizable compounds of the

oils, thereby affecting the adsorption of the stefactive compound at the two-phase
14
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interface (Bonilla, Atarés, Vargas, & Chiralt, 2013alvia-Trujillo, Rojas-Grad,
Soliva-Fortuny, & Martin-Belloso, 2015). RBO emuass with long-chain
unsaturated triglycerides had a more negative petential than that of CNO
emulsions, which may be related to a higher nunolberegatively charged particles
(Celus, Salvia-Trujillo, Kyomugasho, Maes, Van Lp&yauwet, & Hendrickx, 2018).
The pH value of the emulsion (6.5) was higher ttian pH value of the fatty acid
(4.8-5), resulting in ionization of its carboxylogip. The free fatty acid in RBO was
more easily ionized, resulting in a more negatitiarge. For anionic polymers,
smaller particles have higher mobility than largearticles, allowing smaller
electrophoretic particles to move faster (Celudyi&arujillo, Kyomugasho, Maes,
Van Loey, Grauwet, & Hendrickx, 2018), which maypkn the smaller average
particle size but more negative potential valuehef RBO-P emulsion. The stability
of the emulsions was measured with droplet size asi@d potential (Ricaurte,
Perea-Flores, Martinez, & Quintanilla-Carvajal, @D1
3.2.2 Droplet size distribution of oil emulsions

The results of the droplet size distribution areveh in Figure 1(d). The different
emulsions had a slight effect on the mean parside. Intensity (%) represents the
relative strength of the measured intensity of tiitspof different particle sizes in the
emulsion system, and the measured intensity shbaitsthe strongest particle size
value is close to the average patrticle size. Thiecga size distributions of RBO-D,
RBO-P, and RBO-S were unimodal with gradual widgnldowever, the particle size

distributions of CNO-C and CNO-J were unimodal aadow. Thus, the droplet size
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distribution of CNO emulsions was better than tbhtRBO emulsions. The final
droplet size of the emulsion was the result of clemmteractions among processing
conditions, emulsifiers, and oil droplet adsorpt{@iooster, Golding, & Sanguansri,
2008). It has been reported that the molecular adtaristics, such as molecular
weight, polarity and concept, of oil are importéattors in determining the ability to
bind to surfactants (Djekic & Primorac, 2008). Oilgth higher concentrations of
polar components may reduce the interfacial tenaioth result in droplet breakage
during homogenization, which allows the oils tostise in the aqueous phase,
resulting in a particle size distribution intengityak of larger droplets (Ziani, Fang, &
Mcclements, 2012)RBO had more abundant minor constituents with gtioolarity
than CNO. RBO-S, which was rich in minor constitiseimad a wider intensity peak
as shown in Figure 1(d). RBO was rich in long-chéiiglycerides with larger
molecular weight than CNO. CNO had medium-chaiglyderides, which may
explain why RBO was more prone to form larger detgl Because the emulsions
were produced under the same conditions, theirlelrgjze distribution results were

related to the composition of the oil.

3.3 Cytotoxicity effects and antioxidant properties

In this study, the CAA assay using ABAP-inducedopgt radicals in HepG2 cells
was conducted to quantify the cellular antioxidadtility of oil emulsions by
preventing the formation of DCF from oxidation detened by the decrease of

fluorescence (Meng et al., 2017). As shown in Fagdr the kinetics of DCFH
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356

oxidation in HepG2 cells by peroxyl radicals gemedadrom ABAP was measured for
oil emulsions. The increase in fluorescence dukeédDCFH oxidation was inhibited
by oil emulsions in a dose-dependent manner as nemaded by the curves generated
from HepG2 cells treated with five oil emulsion$eBe results were consistent with
those observed for Chinese hawthorn (Wen et al5Rand black tea (Liu & Huang,
2015).

Dose-response curves from the ratio of the arearuhe curve of the oil emulsion
sample to that of the blank and control indicatée tinhibition of peroxyl
radical-induced DCFH oxidation by the five oil emiohs (Fig. 3). The Rvalues
were all greater than 0.9, indicating good doseetffelationships. To calculate the
corresponding E&g, the median effect curve was plotted for eacheniulsion (Fig.
4). The EGo of quercetin, as the equivalent weight, was 41811(R? = 0.9841) in this
study.

Table 3 shows that HepG2 cell proliferation was %9%@r 0-20 mg/mL (RBO-S),
0-50 mg/mL (RBO-P), greater than 20 mg/mL (CNO-&@)d 40 mg/mL (RBO-D and
CNO-J). Therefore, we used these results as refeseto determine the CAA value
within the safe concentration range of various damprhe Eg, of RBO emulsions
and CNO emulsions were 5.8 0.2 mg/mL (RBO-D), 4.6 + 0.3 mg/mL (RBO-P), 0.6
+ 0.1 mg/mL (RBO-S), 4.6 + 0.3 mg/mL (CNO-C), and & 0.2 mg/mL (CNO-J).
The intra experimental coefficient of variation (C¥r the RBO-S reached 16.7%
and was significantly higher than the CV of theestfour samples, which were below

10%. The CAA unit of these five oil emulsions frdnigh to low were 846.6 £ 0.6
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378

umol of QE/100 mg oil (RBO-S) > 107.2 + Qu2Znol of QE/100 mg oil (CNO-Cy=
106.1 + 0.4umol of QE/100 mg oil (RBO-P) > 83.7 + Oimol of QE/100 mg oil
(RBO-D) > 76.7 £ 0.2umol of QE/100 mg oil (CNO-J) (Table 3). These ré&sul
indicated that RBO-S showed the highest antioxidaattility against the
ABAP-generated peroxyl radicals by preventing thedation of DCFH and
membrane lipids, which decreased the formation ©Fn HepG2 cells. CNO-C and
RBO-P had the next highest antioxidant abilitiest minowed no significant
differences (>0.05).

Both RBO-D and RBO-P emulsions exhibited signifitanlower cellular
antioxidant ability than RBO-S emulsions<Q.05), which may have been due to the
large amount of minor constituents in RBO-S, esgBcipolyphenols. The CAA
value of the CNO-C emulsion was close to that ef RBO-P emulsion but higher
than that of the RBO-D emulsion, indicating that dmen-chain and saturated
triglycerides improve the uptake and bioavailapilif antioxidant ingredients into
HepG2 cells (Fan, Liu, Gao, Zhang, & Yi, 2018). ©@dmposed of medium-chain
triglycerides is more readily digested and absoras oil composed of long-chain
triglycerides (Takeuchi, Sekine, & Seto, 2008).aldition to the influence of the
surface ultrastructure of the cell, transporter mMR&kpression or enzyme activity,
fatty acids with different chain lengths and safiora have different regulatory
pathways. For example, long-chain fatty acids (g&teacid andtranslO, cis 12
conjugated linolenic acid) tend to regulate extitata matrix-receptor interactions

(Yan, Tang, Zhou, Han, & Tan, 2019). Moreover, @shbeen reported that
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polyunsaturated fatty acids have a significanta@ften cell membrane fluidity, while
palmitic acid does not affect membrane fluidity (¥a Nobili, Girard-Pipau, &

Rampal, 2003). The distributions of polyunsaturdtgty acid and minor constituents
in triacylglycerol may affect the functions of vegele oils (Yalagala, Sugasini,
Ramaprasad, & Lokesh, 2017). In the polyunsaturéégg acid emulsion system,
such as in the RBO emulsions, high concentratioa-tfcopherol self-assembles to
form micelles, which reduces the tocopherol contnthe oil-water interface and

reduces its antioxidant capacity (Huang, Frankehw&rz, & German, 1996).

4. Conclusion

Different types of triglycerides affected the enmusphysical properties. Oils with
medium-chain saturated triglycerides easily formedulsions with concentrated
droplet size distribution. In contrast, oil emutssorich in long-chain unsaturated
triglycerides showed a more dispersed dropletditeibution.

Different triglycerides also affected the cellutartioxidant properties of the whole
oil emulsion. The same vegetable oils, containirgggame triglycerides, had different
cellular antioxidant capacity due to the compositiand content of the minor
constituents. Medium-chain and saturated triglylsiin vegetable oil emulsions
resulted in strong CAA despite the lower amountsofor constituents. The result of
the CAA was due to the combined effects of trighaes and minor constituents of
the vegetable oil, which also demonstrated the ssiyeto study the antioxidant

properties of whole oils and whole foods.
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Our next study on the cellular antioxidant prog=f vegetable oils influenced by
triglycerides with different carbon chain lengths different saturation will provide

additional knowledge when choosing more typicaletafgle oils.
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Table 1 Fatty acid, triglyceride composition ofdivegetable oils.

RBO-D RBO-P RBO-S CNO-C CNO-J
Fatty acid composition (%)
C6:0 - - - 0.34 +0.01 -
c8:0 - - - 5.59 +0.02 -
C10:0 - - - 5.20 + 0.3 -
C12:0 - - - 46.78 + 0.28 -
C14:0 0.26 +0.01 0.27 +0.0F 0.23+0.0F 19.97 £ 0.22 0.26 +0.0F
C16:0 17.04 +0.26 17.02+0.13 17.16 + 0.0F 10.29 £ 0.07 17.04 £ 0.28
C16:1 0.15+0.08 0.12 +0.00 0.12 +0.0F - 0.15+0.00
C18:0 1.29 +0.02 1.39 +0.0F 1.42 +0.0F 3.26 £0.03 1.29 +0.02
c18:1 41.89+0.1% 41.95+0.07 41.56 +0.03 7.09 £ 0.1P 41.89 +0.1%
C18:2 37.37+0.48 37.50+0.4F 37.53+0.1% 1.53 +0.04 37.37+0.48
Cc18:3 1.08 +0.01 1.11+0.1F 1.30 £ 0.01 - 1.08 + 0.01
C20:0 0.25 +0.08 0.15 +0.0% 0.18 +0.0F - 0.25 +0.00
SFA 18.83 +0.34 18.82 +0.16 18.98 + 0.03 91.43 +0.08 18.83 +0.34
PUFA 38.44 +0.68 38.60 + 0.47 38.83+0.18 1.53 +0.04 38.44 +0.68
MUFA 42.03 +0.2F 42.07 +0.07 41.67 +0.03 7.09+0.11 42,03 +0.2¢
UFA 80.47 + 0.45 80.67 + 1.0 80.50 + 0.10 8.62 +0.37 80.47 + 0.45
ECN(%)
28 - - - - -
30 - g - 1.97 + 0.18 -
32 - - - 12.37 + 0.13 -
34 - 3 - 16.99 + 0.14 -
36 - - - 20.27 + 0.88 -
38 - - - 17.33 + 0.28 -
40 - - - 11.59 + 0.2% -
42 2.71 + 0.04 2.78 + 0.07 3.06 + 0.06 7.21 + 0.18° 2.71 + 0.04
44 29.55 + 0.04 28.38 + 0.06 29.08 + 0.5% 2.44 + 013 29.55 + 0.04
46 47.03 + 1.06 47.19 + 0.3F 46.70 + 0.04 3.47 + 0.09 47.03 £ 1.00
48 20.71 + 0.92 21.66 + 0.3G 21.16 + 0.58 1.40 + 0.17° 20.71 + 0.92
50 - - - 0.57 + 0.09 -
52 - - - 0.52 + 0.02 -

* SFA saturated fatty acid®UFA polyunsaturated fatty acidslUFA monounsaturated fatty acid$f-A unsaturated fatty acids, “-" not detectdthe equivalent carbon number (ECN) is equal ¢o th
total number of carbon atoms in the fatty acid mitwice the number of double bonds. The data inahke is the mean * standard deviation, "-" regmésno detectable; the different letters in

the peer represent a significant differeree0(05).



Table 2 Minor constituent composition of five veajae oils.
RBO-D RBO-P RBO-S CNO-C CNO-J
Oryzanol (mg/kg oil)
1543 + 26° 5605 + 137 25611 + 257f - -
Tocopherolqmg/kg oil)
a- Tocopherol 60 + 2° 245 + 13 214 +1° 3+0¢ 3+0¢
B- Tocopherol - - - - -
v- Tocopherol - - - - -
6 - Tocopherol - - - - -
Total tocopherol 60 + 2° 245 + 13 214 +1° 3+0¢ 3+0¢
Phytosterol{mg/kg oil)
AS- Campesterol 701+ 4° 1114 + 5P 1488 + 51° 25 +1¢ 24 +1¢
Stigmasterol 499 + 217 793 + 33 873 + 46 43 + 3¢ 38 +0¢
B- sitosterol 2664 + 94 3669 + 165 3933 + 167 118 + 4° 124 + 1°
Fucosterol 302 £12 240+ & 383 +54 40 +2° 42 +1°
Total sterol 4167+ 249° 5819 + 258 6677 + 315 225 + 10" 228 + 4°
Polyphenol{mg GAE/kg oil)
21 +1° 60 + 2° 198 + 7° 4+0¢ -
* The data in the table is the mean + standardadievi, "-" represents no detectable; the diffetettérs in the peer represent a significant difieeefp<0.05).




Table 3 EG values for the inhibition of peroxyl radical-inceec DCFH oxidation by five
vegetable oil emulsions (me&r8D, n=3) and their cytotoxic concentrations.

ECso? CV (%) Cytotoxicity®  CAA (umol of QE/100 mg oil)
Quercetin H+01 20 32
RBO-D 59+02° 34 >40 837+04°
RBO-P 45+03° 6.5 50 1061 +04°
RBO-S 06+0.1¢ 16.7 20 8466+ 06 ¢
CNO-C 46+03° 65 >20 1072+02°
CNO-J 64+02° 3.1 >40 767+02%

A The EGo value of quercetin is expressedmnol and the Eg, value of RBO-D, RBO-P, RBO-S, CNO-C, and
CNO-J emulsions are expressed as mg/mL.

8 The cytotoxicity value of quercetin is expressequa®ol and the cytotoxicity value of RBO-D, RBO-P, RBO-S,
CNO-C, and CNO-J emulsions are expressed as mg/mis Qiercetin equivalents.

*Different lowercase letters indicate significarifferences §p<0.05).
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Fig. 1. (a) Mean patrticle size, (b) PDI and (clpzedtential (d) droplet size distribution of RBO-D,
RBO-P, RBO-S, CNO-C, and CNO-J emulsions obtairsiguhigh homogenizing pressures (60
MPa, 3 cycle times). *Different letters indicatgrsficant differencesp<0.05) of the mean

particle size, PDI or zeta potential between filemulsions.
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Fig. 2. Peroxyl radical-induced oxidation of DCRHDQCF in HepG2 cells and the inhibition of

oxidation by RBO-D, RBO-P, RBO-S, CNO-C, and CN@rdulsions over time. The curves

shown in each graph are from a single experimeata(nt SD, n = 3).
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Fig. 3. Dose-response curves for inhibition of pgteadical-induced DCFH oxidation by RBO-D,
RBO-P, RBO-S, CNO-C, and CNO-J emulsions. The aust®wn are each from a single

experiment (mean + SD, n = 3).
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Fig. 4. Median effect plots for inhibition of pergxadical-induced DCFH oxidation by RBO-D,
RBO-P, RBO-S, CNO-C, and CNO-J emulsions. The cush®wn are from a single experiment

(mean £ SD, n = 3).



Highlights:

® Emulsionsrich in long-chain unsaturated triglycerides are more dispersed in size
distribution.

® Oil with medium-chain saturated triglyceride is easier to result in strong CAA in
oil emulsions.

® The result of CAA was the combined effects of triglycerides and micronutrients

of the vegetable oil
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