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ABSTRACT 9 

PAMAM dendrimers have recently been investigated as efficient and biocompatible oil 10 

dispersants utilizing their encapsulation capacity; however, their high cationic charge density has 11 

been shown to be cytotoxic. It is therefore imperative to mitigate cationic charge-induced 12 

toxicity and understand the effects of such changes. Presented here is a synergistic experimental 13 

and computational approach to examine the effects of varying terminal surface charge on the 14 

capacity of dendrimers to disperse model liner, polycyclic aromatic, and hybrid hydrocarbons. 15 

Uncharged dendrimers collapse by forming intra-molecular hydrogen bonds, which reduce the 16 

hosting capability. On the other hand, changing the surface charges from positive to negative 17 

greatly shifts the pKa of tertiary amines of the PAMAM dendrimer interior. As a result, the 18 

negatively charged dendrimers have a significant percentage of tertiary amines protonated, 19 

~30%. This unexpected change in interior protonation state cause electrostatic interactions with 20 

the anionic terminal groups, leading to contraction and a marked decrease in hydrocarbon 21 

hosting capacity. The present work highlights the robust nature of dendrimer oil dispersion and 22 
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also illuminates potentially unintended or unanticipated effects of varying dendrimer surface 23 

chemistry on their encapsulation or hosting efficacy, which is important for their environmental, 24 

industrial, and biomedical applications.  25 

 26 

1. INTRODUCTION 27 

Originally proposed by Paul Flory,1 dendritic polymers are a class of macromolecules consisting 28 

of highly branched polymer units. Within this class are dendrons, dendrimers, and 29 

hyperbranched polymers.1 Dendrimers can be precisely synthesized with high order and 30 

monodispersion, with well defined branching units emanating from a central core.1 The number 31 

of these branching iterations is termed the Generation of the dendrimer and determines its size, 32 

structure, and function. Hyperbranched polymers, in contrast, possess less well-defined branched 33 

interiors, resulting in a higher polydispersity at a much lower production cost. Due to their 34 

unique physicochemical properties, there are a wide variety of current and potential applications 35 

of dendrimers ranging from environment to energy and biomedicine. For example, hydroxyl-36 

terminated PAMAM dendrimers have been shown to remove contaminants such as humic acids2 37 

and metal ions3,4 from drinking water or contaminated soils. Dendrimers can be used in light-38 

harvesting applications for superior transduction efficiency in diodes and other photonic 39 

devices.5,6 The surface functionality of PAMAM dendrimers has been altered to include long-40 

lifetime ibuprofen release in vivo7 and conjugation with partially anionic folate-conjugates has 41 

been explored for the delivery of anti-arthritic drugs.8 The ability of dendrimers to encapsulate 42 

small organic molecules has also been studied in terms of dendrimer generation9 as well as the 43 

shape of a guest molecule,10 demonstrating a wide array of hosting capabilities of dendrimers in 44 

aqueous solution. 45 
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Given their hosting capabilities, we have previously proposed PAMAM polymers as oil 46 

dispersants,11 and showed that cationic PAMAM dendrimers are capable of hosting both 47 

polyaromatic and linear hydrocarbons in water.11 Conventionally, lipid-like oil dispersants have 48 

been in use since at least the 1960s12 and also during the large scale Deepwater Horizon disaster 49 

of 2010. However, concerns over the potential toxicity of conventional oil dispersants have been 50 

recently raised.13–15 There is a renewed and pressing desire for effective yet biocompatible 51 

dispersing agents. Our previous work has shown, however, that highly cationic amine-terminated 52 

poly(amidoamine) (PAMAM) dendrimers cause acute toxicity in amoebas at a high 53 

concentration.16 Similarly, several other studies have also shown that highly cationic PAMAM 54 

dendrimers cause significant charge-induced toxicity in vitro17–20 and rapid blood clotting in 55 

vivo.21 It has been suggested that the electrostatic interaction between highly cationic PAMAM 56 

and negatively charged cell membrane results in pore formation to trigger cytotoxicity. 57 

Therefore, efforts are increasingly being focused on altering dendrimer terminal charges in order 58 

to reduce the toxicity or improve the efficacy of dendrimer agents.22,23  59 

Many studies have been conducted on the size, structure, and dynamics of dendrimers 60 

depending on dendrimer generation24,25 and environmental conditions such as solution pH and 61 

ionic strength.24–28 It has been shown that PAMAM dendrimers adopt globular-like structures 62 

with the repeating monomers loosely packed in the interior and the surface groups protruding, 63 

forming hydrogen bonds with water. Simulations revealed dynamically forming pores in the 64 

interior that can bind various guest molecules.24,29 Solution pH and ionic strength can also affect 65 

dendrimer structure by changing the dendrimer protonation states and screening of electrostatic 66 

interactions, respectively.26,27,30 It is not understood, however, how surface modifications of 67 

 3 



dendrimers, a common strategy in dendrimer design and synthesis, might affect their size, 68 

structure, dynamics, and subsequent functionality. 69 

Here, we investigate the effects of varying the surface charge and functionality on 70 

dendrimers’ ability to serve as effective oil dispersants. Specifically, we examine cationic amine-71 

terminated (G4-NH2), neutral hydroxyl-terminated (G4-OH), and anionic succinamic acid-72 

terminated (G4-SA) PAMAM dendrimers (Fig. 1A). Synergistic experiments and molecular 73 

dynamics simulations are performed to probe the interactions, limitations, mechanisms, and 74 

differences between cationic, anionic, and neutrally charged PAMAM dendrimers with linear, 75 

polyaromatic, and hybrid hydrocarbons as well as the combination thereof. These various 76 

combinations of hydrocarbon are studied in order to gain a more fundamental understanding of 77 

dendrimer oil dispersant interactions with the various hydrocarbon components of crude oil as 78 

well as illuminate any potential synergistic dispersion effects of hydrocarbon mixtures. The 79 

advantages of model hydrocarbons over whole crude oil include the real-time tracking and 80 

accurate quantification for mechanistic studies of the structure-function relationship. Additional 81 

studies of dendrimer dispersion efficacy and toxicity with crude oil have been done in a separate 82 

work. The implications of this study reach beyond oil dispersion to other biomedical and 83 

environmental applications including drug delivery and water purification, noting the differences 84 

in dendrimer interactions with aliphatic and aromatic hydrophobic molecules as well as 85 

potentially unanticipated effects of altering dendrimer surface functionality. We find that marked 86 

differences in hosting capacity for hydrocarbons arise from changes in both the structure and 87 

dynamics of the dendrimers with varying terminal functionality. 88 

 89 

2. EXPERIMENTAL 90 
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2.1 Materials and Characterization. All dendrimers were purchased from Dendritech, Inc. and 91 

were PAMAM G4.0 (generation four) in water solvent and stored at 4°C. Phenanthrene (PN) and 92 

octadecylbenzene (ODB) were purchased from Sigma-Aldrich, hexadecane (C16) from Acros 93 

Organics and all stored at room temperature. The dendrimer stock solutions were diluted in DI 94 

water (18 MΩ cm) to a final concentration of 15 µM, and their pH adjusted to 8.2 to mimic that 95 

of seawater using 1M NaOH and 1M HCl. Dynamic light scattering (DLS) and zeta potential 96 

characterizations of these prepared stock solutions were carried out on a NanoBrook ZetaPALS. 97 

 98 

2.2 UV-vis Spectophotometry and Phenanthrene Affinity. UV-vis spectroscopy absorbance 99 

measurements were performed on a temperature-controlled Cary 300 Bio (Thermo Electric 100 

Corp.). To normalize the concentration of PN, a known quantity was dissolved in methanol and 101 

the intensity of the absorbance peak at 251 nm was measured. This relation was then used to 102 

calculate all other PN concentrations. The concentration of dendrimer-associated PN was 103 

calculated using Eqn. (1) where [PN]T is the total observed concentration of PN in the column 104 

and [PN]S is the concentration of free PN in solution.  105 

 [D·PN]=[PN]T-[PN]S (1) 106 

A solution of 15 µM dendrimers was used as a control in all measurements of PN with 107 

dendrimers. Each sample was prepared with 1 mg of PN added to 2 mL of either water or 108 

dendrimer stock solution. Samples were bath sonicated for 5 min (Branson) in order to break PN 109 

solids and then rotated overnight to reach equilibrium. We then measured the affinity of 110 

dendrimers for PN in water as a function of temperature by measuring the absorbance of PN over 111 

a temperature range from 20-80ºC. The temperature was increased at a rate of 0.1ºC/min, and 112 

absorbance was measured every 1.0 ± 0.02ºC. These measurements were made in triplicate in 113 
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sealed quartz cuvettes. The apparent association constant K was calculated using Eqn. (2) where 114 

[D] is the free dendrimer concentration. 115 

 K=[D·PN]/([D][PN]S) (2)  116 

Solutions of PN dissolved in C16 were prepared such that the final solution was 8% PN by weight 117 

dissolved in C16. For sample incubations, 20 µL of this stock was added to 2 mL of either water 118 

or dendrimer solution and then rotated for 1 h. This ensured that the same total mass of PN was 119 

added as in the pure PN experiments. The same temperature ramp as above was then performed, 120 

again by measuring the absorbance of PN at 251 nm. 121 

 122 

2.3 Fluorescence. Fluorescence measurements were performed on a temperature-controlled Cary 123 

Eclipse fluorometer (Thermo Electric Corp.). ODB-doped C16 stock was prepared such that the 124 

hydrocarbon solution was 2.6% ODB by weight. For all measurements with ODB, 65 µL of 125 

stock solution was added to 2 mL of water or dendrimer solution and then rotated gently for 1 h.  126 

It was then allowed to settle, and solution was pulled from the middle of each tube to avoid 127 

phase-separated oil. Then 20 µL of stock ODB-doped C16 was added to each cuvette to ensure a 128 

consistent excess of available hydrocarbons. The fluorescence emission was observed at both 129 

wavelengths of 290 nm and 299 nm, with an excitation wavelength of 258 nm in both cases. The 130 

fluorescence emission intensities were recorded every 1.0 ± 0.02ºC in the same temperature ramp 131 

as described in Section 2.2.  132 

 133 

2.4 DMD Simulations. Discrete molecular dynamics (DMD) is a special type of molecular 134 

dynamics algorithm, featuring rapid dynamics sampling efficiency. The detailed algorithm and 135 

force field parameterization of DMD can be found elsewhere.31 We used a united atom 136 
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representation to model the molecular system, explicitly modeling all polar hydrogen and heavy 137 

atoms and with implicit solvent. Inter-atomic interactions were modeled by a physical force field 138 

adapted from Medusa,32,33 which included Van der Waals (VDW), solvation, electrostatic and 139 

hydrogen bond interactions. The force field parameters for VDW interactions, bond length, angle 140 

and dihedral angles were taken from CHARMM 19. The solvation energy was included using the 141 

Lazaridis-Karplus implicit solvent model. The distance and angular dependant hydrogen bond 142 

interaction was modeled using a reaction-like algorithm.32 We used the Debye-Hückel 143 

approximation to model the screened electrostatic interactions between charged atoms. The 144 

Debye length was approximately 10 Å by assuming water relative permittivity of 80, and a 145 

monovalent electrolyte concentration of 0.1 mM.  146 

The starting structures of dendrimers were generated by constructing the idealized 3-147 

dimensional dendrimer structure consisting of a core, branching units, and terminal groups, 148 

followed by equilibration and energy minimization. To emulate a solution pH of 8.2, all G4-NH2 149 

and G4-SA terminal groups were charged (protonated and deprotonated, respectively). All 150 

tertiary amines in G4-NH2 and G4-OH were deprotonated and therefore uncharged. To model the 151 

partial protonation of tertiary amines in the presence of acid terminal groups, the protonation 152 

state of the interior tertiary amines of G4-SA was varied, where 0, 10, 20, or 30% of randomly 153 

selected tertiary amines were protonated. In our simulations, the net charges of the molecular 154 

systems were maintained zero by adding offsetting charges, such as chloride (Cl-) and sodium 155 

(Na+) ions. After the initialization of dendrimer structures, energy minimization using DMD was 156 

carried out for 10,000 time steps (approximately 10 ns) before carrying out further equilibrium 157 

simulations. 158 
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In DMD simulations, temperature is in the unit of kcals/mol·kB, where kB is the Boltzmann 159 

constant. Our simulations were conducted for a temperature range of 0.55-0.75 kcal/mol·kB, 160 

corresponding approximately to 275-375 K. The Anderson’s thermostat34 was used to perform 161 

constant temperature simulations. At each temperature, energy minimization was first carried out 162 

for 10 ns and the simulations were conducted for 2 million time steps (approximately 1 µs), 163 

corresponding to an average of approximately 72 CPU hours. We characterized the sizes of all 164 

three types of dendrimers by measuring the radius of gyration (Rg) as a function of temperature. 165 

The mean and standard deviation of Rg were obtained from 8,000 snapshots evenly distributed 166 

throughout the final 800 ns of simulation.  167 

 168 

3. RESULTS AND DISCUSSION 169 

Distinctive Physicochemical Properties of Dendrimers with Modified Terminal Groups. 170 

Generation 4 PAMAM dendrimers of positively (NH2), negatively (SA), and neutrally (OH) 171 

charged functional groups, all at pH 8.2, were first incubated with PN. We measured the 172 

concentration of saturated PN in water and in dendrimer solution with an excess of PN (see Eqn. 173 

(1), section 2.2 in Methods; Fig. S1), and computed the concentration of dendrimer-associated 174 

PN [D·PN]. We determined the [D·PN], quantifying the capacity of dendrimer to host PN, as a 175 

function of temperature (Fig. 1a). The temperature range of 20-80 ºC was chosen to examine the 176 

fundamental differences in dendrimer behavior and interactions with hydrocarbons at 177 

environmentally relevant temperatures and beyond. Initially, the positively and negatively 178 

charged dendrimers have similar hosting capacities, while the neutrally charged dendrimer has 179 

lower hosting capacity. As temperature increases in all cases there is an increased hosting of PN 180 

by dendrimers, in part due to the increasing availability of PN in solution with increasing 181 
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temperature. This trend continues until approximately 74ºC for positively and neutrally charged 182 

dendrimers, at which point the PN hosting capacity reaches a peak followed by a marked 183 

decrease. In contrast, negatively charged dendrimers reach their maximum capacity between 65-184 

74ºC, reaching just 56% the maximum PN hosting of G4-NH2.  185 

With the measured PN concentrations in water and in dendrimers as well as the 186 

concentration of dendrimers in solution, we can calculate the apparent association constants, K 187 

(see Eqn. (2), Section 2.2 in Methods) and compute logK as a function of temperature (Fig. 1b). 188 

For NH2 and SA-terminated dendrimers, we observe relatively constant, large apparent 189 

association constants at low temperatures. In contrast, the neutral OH-terminated dendrimers had 190 

a much lower affinity at low temperature, but this affinity surprisingly increases rapidly with 191 

respect to increased temperature and becomes nearly identical to the NH2-terminated affinity 192 

near 70ºC. Both G4-NH2 and G4-OH dendrimer affinity for PN sharply drop at 74ºC, as 193 

expected (see Fig. 1a). Despite the more significant and gradual decrease in G4-SA affinity, we 194 

note an increase in this rate of decrease at the same 74ºC, indicating the temperature at which it 195 

becomes thermodynamically more favorable for PN to dissolve in water than to be partitioned 196 

inside of the dendrimers, as PN water solubility increases exponentially with temperature over 197 

the observed range (Figure S1). Therefore, the changes in dendrimer surface charge result in 198 

drastic changes in its hosting capacity of PN and the temperature dependences. However, since 199 

PN is non-charged and the binding is not governed by electrostatic interactions, it is intriguing as 200 

what the molecular mechanism is for such drastic changes in hydrocarbon hosting capacity upon 201 

adjusting the dendrimer surface charges. 202 

We postulated that the changes are mostly in the structure of dendrimer, which in turn 203 

affect the hosting function of dendrimer. We first characterized the size and charge properties of 204 
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all three types of dendrimers in solution (Table 1) using DLS and PALS zeta potential 205 

measurements, respectively (Methods). The DLS results suggest that the dendrimers are fairly 206 

monodisperse and tend not to aggregate in DI water. Second, that the OH-terminated dendrimers 207 

have smaller hydrodynamic diameters (DH) than their charged counterparts. The zeta (ζ) 208 

potential quantifies the dendrimer net electrokinetic potential in solution. We find that, indeed, 209 

the OH-terminated dendrimers carry nearly zero net charge and the amine-terminated dendrimers 210 

are highly positively charged (+30 mV). Interestingly, the SA-terminated, while negatively 211 

charged, carry a net charge with significantly smaller magnitude than the amine-terminated. This 212 

reduction of overall net charge suggests that some of the interior tertiary amines in SA-213 

terminated dendrimers may become protonated at this pH. Assuming electric multilayers similar 214 

in nature, the measured differences in zeta potential magnitude suggest the protonation of 215 

approximately 30% of G4-SA tertiary amines. Such a significant shift in pKa of the tertiary 216 

amine compared to neutral and positively charged dendrimers is feasible in the presence of a 217 

large number of terminal acidic groups in the vicinity.35 These characterizations suggest 218 

significant physicochemical differences in PAMAM dendrimers caused simply by varying the 219 

terminal functionality. Next, we perform molecular dynamics simulations to study the changes of 220 

dendrimer size and structure with respect to surface charges at the molecular level. 221 

We performed DMD simulations of all three dendrimer classes (Methods) and measured 222 

the radius of gyration (Rg) as a function of temperature (Fig. 2a) for each case. For the SA-223 

terminated dendrimers, we studied the effect of partial protonation of their tertiary amines, with 224 

levels of protonation ranging from 0-30% protonation, where 30% tertiary protonation 225 

corresponds to the experimentally observed zeta potential of G4-SA. In DMD simulations, the 226 

dendrimer rapidly reaches equilibrium with Rg fluctuating around its average value in a long 227 
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timescale simulation trajectory (~50 ns; Figure S2). Across the simulated temperature range, the 228 

Rg of G4-NH2 increases from 19.4 Å to 21.25 Å, in agreement with small angle neutron 229 

scattering (SANS) experiments as well as atomistic molecular dynamics (MD) and coarse-230 

grained (CG) simulations performed elsewhere (Table 2, Fig. S3).36–40 Because Rg is an averaged 231 

single-value measurement, we also calculate the radial density function (RDF) to quantify the 232 

internal structure of dendrimers (Figs. S4 & S5). As observed previously in an all-atom MD 233 

simulations41, we find that lower generations exhibit denser core structures while higher 234 

generations G4-G5 are more open due to increased electrostatic repulsion between terminal 235 

groups (Fig. S4). We also computed the RDF for the G4-NH2 dendrimers at different pH values. 236 

At high pH, the primary amines are fully deprononated, making the dendrimer neutrally charged. 237 

At low pH, the tertiary amines are protonated and the dendrimer is fully charged. Our results 238 

confirm the expected transition from dense-core at high pH to dense-shell configuration at 239 

neutral and low pH as observed in previous all-tom MD simulations (Fig. S5).39 This validates 240 

our DMD-derived simulations as efficient and robust for studies of dendrimer structure and 241 

dynamics. G4-SA is, across the simulated temperature range, larger than G4-NH2 due to the 242 

slightly longer terminal groups. Their Rg values decrease with increasing tertiary amine 243 

protonation, and at the lowest tested temperature it reduces from approximately 22.25 Å at 0% 244 

protonation to just 20.0 Å once 30% of the interior tertiary amines have been protonated. This 245 

size change is because of the electrostatic attraction between these protonated groups and the 246 

negatively charged terminal carboxyl groups. This attraction also limits the expansion of G4-SA 247 

with temperature: e.g. G4-SA(30%) swells just 1.25 Å compared to a 1.9 Å growth seen in G4-248 

NH2, resulting in equal Rg values at the highest temperature in simulations. 249 

 11 



 While amine- and SA-terminated dendrimers have similar sizes across the entire 250 

temperature range, G4-OH is clearly smaller than its charged counterparts, expanding from an Rg 251 

of 16.25 to 18.13 Å at the lowest and highest simulation temperatures, respectively. This 252 

markedly smaller size is due to the lack of electrostatic repulsion between terminal groups and 253 

hydrogen bond formation between the terminal hydroxyl groups, resulting in a much more 254 

compact dendrimer structure (e.g. typical snapshot structures in Fig. 2b). 255 

 These differences in size and how sizes change with temperature in simulations is 256 

consistent with the experimentally observed differences in apparent affinity for PN as in Fig. 1. 257 

G4-OH has a much lower affinity for PN at low temperatures because, at those temperatures, 258 

they are significantly more compact than either G4-SA or -NH2, thus reducing the size and 259 

accessibility of the interior voids to host PN as illustrated by the dense-core structure of the 260 

neutrally charged dendrimer (Fig. S4). As temperature increases, the G4-OH expands with 261 

increased Rg by breaking the hydrogen bonds, thereby granting access to its growing interior 262 

cavities. Our zeta-potential characterization of G4-NH2 and G4-SA suggests that approximately 263 

30% of the G4-SA tertiary amines are protonated (Fig. 2c) assuming tertiary amines in G4-NH2 264 

are not protonated.22 This change allows strong electrostatic interaction between terminal groups 265 

and the protonated tertiary amines, which causes the dendrimer to contract relative to the less 266 

protonated G4-SA dendrimers. Such strong electrostatic interaction also noticeably inhibits size 267 

expansion with temperature in contrast to the weaker hydrogen bond interaction in G4-OH (Fig. 268 

2a). As a result, the G4-SA features a lower host capacity and apparent affinities for PN 269 

compared to G4-NH2. These differences in swelling behavior highlight why the temperature 270 

dependence in PN hosting capacity is different for each dendrimer despite all three 271 

functionalizations growing with increasing temperature. Such a dependence on hydrophobic core 272 

 12 



accessible for hosting small hydrophobic molecules is in agreement with earlier studies by 273 

Tomalia et al with lipophilic dye encapsulation by dendrimers of various generations.9 In 274 

addition, since the dendrimer volume available for hosting increases rapidly as the cubic power 275 

of the size, a small change in Rg  (Fig. 2) leads to large changes in hosting capacity (Fig. 1).  It is 276 

also important to note that, by charging a fraction of the interior groups, the interior voids 277 

become slightly less hydrophobic and thus less favorable for hydrocarbon interactions. Another 278 

interesting observation in experiments is the sharp decrease of PN binding at 74ºC for all 279 

dendrimers (Fig. 1). We hypothesize that this phenomenon is due to the intrinsic structural 280 

properties of dendrimer at different temperatures. As the dendrimers expand with increasing 281 

temperature (Fig. 2), the cooperative binding with PN due to interactions among amidoamine 282 

monomers is reduced. At high temperatures, the binding is dominated by the interaction between 283 

PN and amidoamine monomer. Therefore, the transition at 74ºC is the result of dissociation of 284 

PN from amidoamine monomer to the solution. 285 

 286 

Hosting of Various Classes of Hydrocarbons and Their Mixtures. Having examined the 287 

differences between dendrimers of different surface charge, we are now interested in binding 288 

between PAMAM dendrimers, using G4-NH2 as our model, and different hydrocarbons. Amine-289 

terminated dendrimers were chosen because they exhibited the strongest binding with 290 

hydrocarbons across the tested temperature range, and therefore allowed the best characterization 291 

of the differences between PAMAM binding with different classes of hydrocarbons. As crude 292 

oils are composed largely of aliphatic hydrocarbons, it is critical to understand dendrimer 293 

interactions with such linear hydrocarbons. However, purely aliphatic hydrocarbons are difficult 294 

to track quantitatively in solution. To overcome this difficulty, we doped solutions of hexadecane 295 
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with octadecylbenzene (ODB, 2.5 w/w%), which is an 18-carbon chain with the addition of a 296 

benzene ring on one end. The result is a solution with minimal change from a purely aliphatic 297 

hydrocarbon mixture but which can be monitored in real time in solution using 298 

spectrofluorescence measurements (Figure 3). We characterized the excitation and emission of 299 

ODB-doped C16 in various conditions: dissolved in 100% methanol, suspended as an oil-in-water 300 

emulsion in DI water, and in a DI solution of 15 µM G4-NH2 dendrimers (Fig. 3a). We note that 301 

the emission peak redshifts from 281 to 290 nm when suspended in water compared to in 302 

methanol, which we attribute to an increased polarity of the fluorophore environment. The ODB 303 

emission further redshifts to 299 nm upon incubation with dendrimers, indicating that a 304 

significant fraction of ODB molecules interacted directly with G4-NH2 rather than simply being 305 

suspended in smaller droplets of C16. We measured the kinetics of this fluorescence over time, 306 

monitoring ODB emissions at 290 and 299 nm for pure water and dendrimer solution samples, 307 

respectively (Fig. 3b). While the ODB fluorescence in water and with dendrimers began with 308 

nearly identical intensity, there was a marked initial decrease in water-suspended intensity, a loss 309 

of approximately 30%. This indicates that many of the emulsion droplets in the water 310 

suspensions quickly coalesced before the final stable emulsion was achieved. Even after this 311 

relatively stable emulsion was formed, there is a slow (1.4%/h) continued coalescence and a 312 

resulting phase separation of the oil-in-water emulsion. Such coalescence is not seen in the 313 

dendrimer solution over the observed time period, confirming that such suspensions are more 314 

stable than the oil-in-water emulsions. Based on this fluorescence measurement, the stable 315 

suspensions formed with G4-NH2 at room temperature accommodate 57 ± 4% more ODB-doped 316 

C16 than the oil-in-water emulsion, highlighting the efficiency of dendrimer as oil dispersants. 317 

We also note that the nature of the oil dispersion is different from an oil-in-water emulsion 318 
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(Inset, Fig. 3b). The oil-in-water emulsion (left) is cloudy due to light scattering by large oil 319 

droplets, while the dendrimer-dispersed oil (right) is clear, indicating the presence of much 320 

smaller complexes in agreement with previous results that showed the formation of dispersed 321 

C16-dendrimer complexes of approximately 200 nm.11 This further suggests that nearly all 322 

suspended hydrocarbons are dendrimer-associated, since we did not observe any oil-in-water 323 

droplets that would be expected if dendrimers simply added encapsulated hydrocarbons to an oil-324 

in-water emulsion.  325 

 We also examined the fluorescence behavior in water and dendrimer suspensions as a 326 

function of temperature (Fig. 3c), showing normalized fluorescence intensities. Note that the 327 

initial drop in water suspension fluorescence intensity is due to the coalescence observed at early 328 

times as in Fig. 3b, but not due to the increase in temperature. Therefore, normalization for the 329 

water curve was performed after this initial drop in intensity. After this point, the water and 330 

dendrimer suspensions are statistically identical and both intensities decrease linearly with 331 

increasing temperature. This linear decrease in fluorescence intensity with respect to increasing 332 

temperature indicates simple thermal quenching as more rotational and vibrational degrees of 333 

freedom are accessible with increasing temperature, which is different from the molecular 334 

quenching observed between cationic dyes and PAMAM dendrimers with organic moieties.42 335 

We did not observe any transition as was seen in incubation of pure PN with dendrimers. This is 336 

primarily due to the fact that C16 has near zero water solubility, therefore eliminating the 337 

competition with water solvation seen in the case of PN-dendrimer interactions. Because of this 338 

lack of competition, the C16-dendrimer interactions are more stable at high temperatures.  339 

Because crude oil is a combination of aliphatic and aromatic hydrocarbons (among other 340 

components), we created a “model crude” by dissolving PN in C16 (8% PN) to investigate the 341 
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interaction between G4-NH2 dendrimers and hydrocarbon mixtures. By measuring the UV 342 

absorbance of PN as described above, the quantity of oil suspended in the water column with and 343 

without dendrimers was calculated (Figure 4). In contrast to the trend seen when incubated with 344 

pure PN, the dendrimer-associated PN remains approximately constant with temperature across 345 

the entire tested temperature range. These results suggest that the aliphatic C16 is able to 346 

synergistically facilitate stronger, more stable interactions between dendrimers and PN that have 347 

little temperature sensitivity. We hypothesize that C16 accomplishes this by eliminating the PN 348 

partition competition from water solvation, serving as a stronger solvent inside the dendrimer 349 

interior for PN. By assuming that the ratio of PN/C16 remains constant after interacting with 350 

dendrimers, we calculated the total suspended hydrocarbon concentration. The increase in this 351 

total hydrocarbon concentration compared to that in water alone is shown by the shaded area, 352 

reaching at least 35 µM hydrocarbon compared to ~10 µM of pure PN (Fig. 1a); the total 353 

concentration of hydrocarbons with dendrimers in water reached approximately 135 µM. 354 

Because of the behavior noted in the ODB-C16 study, we expect that virtually all of the 355 

suspended PN and C16 were directly dendrimer-associated, which indicates a strong hosting 356 

capacity of at least 9 hydrocarbons per dendrimer. This capacity for suspending hydrocarbons 357 

persisted well beyond environmentally relevant temperatures, and indeed even beyond the 358 

dissociation temperature for pure PN to break down hydrophobic interaction and pi stacking. 359 

In summary, we have shown that aliphatic, aromatic, and hybrid hydrocarbons bind 360 

strongly with G4 PAMAM dendrimers at environmentally relevant temperatures. Mixtures of 361 

aliphatic and aromatic hydrocarbons in a model crude are synergistically dispersed by PAMAM 362 

dendrimers, reaching a highly stable dispersion of at least 9 hydrocarbon molecules per G4 363 

dendrimer over a wide range of temperatures. At environmentally relevant temperatures (i.e. less 364 
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than approximately 32ºC), G4-SA and G4-NH2 bind much more strongly to hydrocarbons than 365 

G4-OH due to this neutral dendrimer collapsing, closing off access to the hydrophobic interior. 366 

However, changes in tertiary amine pKa and resulting interior protonation in G4-SA due to the 367 

abundance of terminal acidic groups severely limited their hydrocarbon hosting capacities. The 368 

dendrimer oil dispersions were also shown to be significantly more stable and contained 57% 369 

more hydrocarbon than simple oil-in-water emulsions. These results demonstrate that, when their 370 

versatile physicochemical properties are utilized properly, dendrimers are very robust as oil 371 

dispersants; we have also illuminated potentially unanticipated or unintended effects of varying 372 

dendrimer surface functionality on hosting applications including dispersion but also drug 373 

delivery and water purification that usually deal with hydrophobic or charged ligand species. 374 

Future work will include studies examining the effects of pH, ionic strength and ions of different 375 

valences in solution. 376 
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Table 1: Characterization of PAMAM Dendrimersa 505 

Functionality DH (nm) ζ (mV) 

NH2 4 ± 1 30.7 ± 2.9 

OH 3 ± 1 -0.9 ± 1.0 

SA 4 ± 1 -18.5 ± 2.0 

a) DH: Hydrodynamic diameter. ζ:Zeta Potential 506 

 507 

Table 2: Comparison of Rg in PAMAM dendrimers from various works 508 

Rg (Å) 
 G3 G4 G5 

Liu et al. - SANS38 16.7 ± 1.2 21.4 ± 0.4 26.8 ± 0.4 
Lee & Larson- CG40 13.1 ± 0.1 --- 23.2 ± 0.1 
Liu et al. - MD39 15.8 ± 0.3 20.6 ± 0.2 25.3 ± 0.1 
Yang & da Rocha – MD 15.0 ± 0.9 21.8 ± 0.8 23.8 ± 0.2 
This Work (300 K) 15.7 ± 0.6 20.2 ± 0.6 25.7 ± 0.4 
 509 
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 511 

 512 

Figures 513 

 514 

Figure 1. The concentration of dendrimer-associated phenanthrene (a) and the corresponding logK association 515 

constants (b) for G4-NH2 (green diamonds), G4-SA (red squares), and G4-OH (blue triangles). Error bars are 516 

standard deviations of 3 independent trials. Note clear transition temperatures at 74ºC where binding with 517 

phenanthrene becomes much less efficient. The inset in (a) shows the chemical structures of a single terminal chain 518 

of G4- NH2, -SA, and -OH from top to bottom. 519 

 520 

 22 



 521 

Figure 2. Radius of gyration (Rg) for G4-NH2, OH, and SA for SA tertiary amine protonation fractions of 0-30% 522 

(a). Error bars are standard deviations taken across the 800 snapshots used in Rg calculations. Representative DMD 523 

snapshots of G4 PAMAM dendrimers at room temperature (b), which illustrates the effect of changing terminal 524 

group chemistry on the overall structure of the dendrimer. Differences in structure between G4-NH2 and G4-SA are 525 

due to partial protonation of SA tertiary amines (c), with a portion of the dendrimer structure shown schematically 526 

emanating from a central core.  527 

 528 
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 529 

Figure 3. The fluorescence excitation and emission spectra (a) of ODB and the kinetics of this fluorescence at room 530 

temperature (b). Inset is a photo of pure water and dendrimer solutions incubated with equal quantities of C16+ODB. 531 

Oil-in-water emulsions are cloudy suspensions (left); dispersion by dendrimers results in a clear suspension (right). 532 

Raising the solution temperature causes thermal quenching with and without dendrimers (c), but no loss of binding 533 

to dendrimers at high temperatures. Error bars are standard deviations of 3 independent trials. 534 
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 535 

Figure 4. The concentration of dendrimer-associated PN (green diamonds) as a function of temperature. Shaded 536 

region shows the calculated increase in concentration of hydrocarbons due to dendrimers compared to oil-in water 537 

emulsion, including both PN and C16. Error bars are standard deviations of 3 independent trials. 538 

 539 
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